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' : ABSTRACT T /7 S

_undertaken as part of this funded research program. First,'a

‘ comprehensive/mathematical and statistical anabzsis of the problems

o .
The final report describes the accomplishménts of six major projects

" ’ N
-
. \

-

caused by errors of measurement.in linear models for assessing change is

,
.

presénted. Results from several disciplines are integrated, and ‘their
implications for studies of educational change discussed-' Second, a

“ B
D
general matrix representation of the problem is formulated, and several

new analytic results are proved concerning the parameters which affect

v

N

bias in observed—score regression statistics. We derive equations which

express the bias in OLS estimators as a function of corvariances among

v

'the_true scores, covariances among the measurement errors, and sample

size. Third, the résults of the first two projects were employed to

create -an algorithm for assessing the potential bias due to the
unreliability of measures. The algorithm has been implemented in the-
form of a FORTRAN program which can be used by researchers to improve the‘ .

design of investigations of change in order to minimize the likelihood of
potential errors of "inference. Fourth, we undertake a comprehensive | .
review of statistical methods which have been developed ih severale
disciplines to egtimate the parameters of true chanee'by‘correcting the e
observed~score regression estimates‘for unreliability. The methods are
fqrmulated in a common algebralhnd evaluated in terms of bias.and power.

. ' > .
Fifth, the report deseribes the results of a series of Monte:Carlo'

experiments which evaluated the performance of - several methods whichr | , -

utilize a_priori information about the variance structure‘of the errors

L]




A

of\measurement to estimate the parameters of the true-scoreregressions.

The advantages and géneral suBeriqrity of estimato™s proposed by Fuller

and his colleagues are discussed. Sixth, a special type of model--the

©

linear functional relation (LFR)~-1s discussed in terms of its relevance

for the study of change. A variety of models whicﬁ have been devised in

péychometriés_andaeconometrics for estimating the parameters of LFRs are

compared and recommendations about the besg\methods to use are made. An
L

extensive bibliography and computer programs are included as gppendices.
?

o \




CHAPTER I [

INTRODUCTION AND EXECUTIVE SUMMARY

. . \ )

~ 7 % OVERVIEW . - {

ky ’ ‘ -

This report describes the results of a large~scale research program

"

*

on ghe effects of measurement error on linear statistical models for
. . 3 '
analyzing psycho-educational change in quasi-experimental and

nonexperimental studies. As components of the research program, six

projects were undertﬁken that analyzed the bias in observed-score

»

~ regressian a@timafors and evaluated thiuperfprmance of statistical models

which estimate the parameters of ;he tr\e—score regressions by using

¢

.information about®the variance st;ucturé of the errors of measurement.

. : - ] \
gtatistical results developed in each chapter are general in that they

©

5 Each project .constitutes a'separate‘chapﬁer in the final report.. The ' . (/‘ -

o . |
apply with equal validity to all”linear models analyses, especially
. . ' . !
multipie regression/correlation (MRC) and analysis of covariance ‘ ,
' - . »~
B L . : ol
- (ANCOVA). However, the results. and thei* implications are Q{fcusped

'primarily with respedt'to studies qf‘psychological and educational

growfﬁ:, The usefulness of the findingé'for educational researchers 1is

-, e ¢

describéd in,considerablé\détail. Each chapter offers sbécifié

recommendations concerning wayé in which researchers can gga?d against

makiﬁg errgrs of inferenpe-abou;"the determinants of change beéause:of ,
errors of méasurement- We believe th;t the results of thigs re;earwh' -
p;oéraﬁ, if utilized by investigators, can sﬁbstann}ally imprbve the .
quélity of studies of educational chanée. |

"In the first project (Chapter II) we present a comprehensive

mathematical and statistical analysis'of the problems\capsed by ‘errors of

. \
[ K .

R ,\" s . A
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p
o

measurement in‘linear models for assessing change. Results from several -

-

disciplines are integrated, and their implications for studies of

. educational change are\discussed. "The second”project (Chapter V). : (
provides a general matrix representation of the problem and proves ' ' '

everal new analytic results-concerning the. parameters which affect bias
‘ v_in observed-scorejregression statistics. We derive equations which -
' . - . o P )
_express the blas in?ordinary least squares (OLS) estimators as a function
of the covariances emoné the true scores, covariances among the errors of
measmrement, ané sample size. The bbjective of the'thgrd prbject‘
L . , '

* (Chapter Vi) was to devise“an algorithm for assessing the potential bias |
’ ; o g ;
< ) \
- -resulting- from the unreliability of measures.’ The algorithm, which has - /
. - ' o
fgeen'implvmentedlin th;\form of a FORTRAN program, can be used’ by - : b

* researchers to-improve'the design of reSearch projects/and program . o ak<3‘
- - , .

~

) e evaluations in order to minimize the likelihood of potential errors of
inferences about'the'determinants of-change. As part of the fourth’ - ‘ .|
: project (Chapter III) we undertook a comprehensive review of the ’ -
L - thtistical methods which have been developed in several disciplines to

estimate the parameters of true change by-correcting the observed-score

P
¢

bregression estimates for unreliability. The methods are formulated in a

common algebra and'évjluated in terms of bias and power.. The fiﬁth

»

. project (Chapter VII) consisted of a series of Monte Carilo experiments'
l . \\
which were designed to evaluate the performance of several methods that

R o . )
utilize a_priori information about the variance structure of the errors

7 '~

"y of measurement to estimate the parameters of the true-score regressions.

L3

S C.

The advantageﬁ and general superiority of estimators proposed by Fuller

and his colleagues are discussed.

In the sixth project (Chapter IV) a




specilal typé of model--the linear functional relation (LFR)--is

introduced aﬁd discusSgd in terms of its relevance for the study of

o

change. A“variety of models which have beén developed in psychometrics
and econometrics for estimating the parameters of LFRs are'compared and
recommendations about. the best'metﬁéds are made. In the following

éections, a summary of each project (chapter) is given.

‘

o

CHAPTER II

. [ 4

The purpose of this chapter 1s to demonstrate the bias caused of

errors of measurement in linear statistical models for analyzing change

and to alert educational researchers to the potential errors of inference

i

concerning the determinants of true change which can result from using

unreliable measures in multiple regression/corfelation and analysis of
" covariance. We provide a mathematical statistical analysis of the
éffects of measurement error on OLS estimaﬁptsi The general situation
considered involves preteét and éosttest measurements on éome attribuﬁe

that is expect;d-to change as a function of intervening expérience (e.ge.,

‘

txeatment)'and background characteristics. ‘A genéral linear model, which

° L3

has been proposed for studying change by several authors, is described.

Definitions of parameters of change and procedures for testing hypbtheses

v

about the effects of trqatﬁeht and background variables are also
presented. Then a simple test score mo&éi\WE}éh takes the observed

(manifest) score as a linear function of true aﬁﬁ\;andom error (latent)
, . > . : ~ .

|

'vaiiables is introduced. Next we rewrite the mathematicial -model of
change to {ncorporate this measurement model, thereby ewglicitly e

recognizing the fact that the variables are not perfectly reliable.

r
-

" *

N .
. . -
K
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The estidatore and tests based oh_tbe obsenggd-score distributions

are then evaluated in terms ' of how adequately they estimate the

parameters of the true-score regressions or test.hypotheses'about effects t_/

on true change. We prove that the observed-score regression estimators

are biased and inconsistent’for the structural parameters, the magﬁitude‘,

and direction of bias being a complex‘fupctipn'ef the intercorrelaﬁionsﬂ

. - i . .
and relialeities of the’/vatiables. It is noted that measurement can

AN

exert harpful effects not only on estimators of the regression 5}

A
’

coefficients but also on the squared multiple cbrrelation and mean square

error. Several exaﬁples are given of.how large the bias and how

incorredt the resulting inferences about the determinants of change can

-

bé. Follg;;ng-the.proofs and demonstratioms, the d%%ferences between the

interpretations and'uses_of the structural (true-score) and

. : observed-;hpre regression weights are discussed. We then int;eguce the
concept of the identifiability and show how it is esseﬁtial to

. determining the estimability gg/the structural parameters. In the final

kS

section of the chapter, the known conditioms for the linéariey of the
observed-seore relation when the structural relatiom is linear are | ) ~
;b “delineated. The chapter provides a great deal of evidence that
researchers should De very cautious when intenpreting MRC and' ANOVA
results based bn observed scores. In many reeearch situations the
dbserﬁed-scoge/eefimates wili be so biased that highly inaccurate
inferences concerning the effects of treatment and background R

K —
characteristics on true change will be drawn.




CHAPTER II1

In this chapter a variety of single—equatiou statistical methods that ’

\

“have been‘developed in education, psychology, socidlogy, and eCoqometrics SN

for estimating the Btructural parameters are reviewed. Our objective\is '

«

tondraw together the.techniques from diverse sources, to express them in .
a common algebra that 1s synchronous with equations of Chapter II, and to

analytically evaluate tﬁém with respect to the statistical criteria of

N

bias, power, and robustness. It is hoped that more inyestigators will ‘be

prompted to use one of thelmethods as a consequence of this review. The

[ N rJ .

‘results are intended to serve as guides for educational researchers who

wish to use.one of the methods but do not know how.to evaluate them.

In the first section we consider the original attenuation correction
formulas of Speafman and several more receht gener%lizations of the
method to semipartial and partial correlations. Although fqua:ions for
the corrected estimators are simple and straightforward, finite Sampling
»theory for thé\EErb~order and partial correlations corrected for
attenuation has proven_ intractable. The methods of Porter (1967), St roud
(1972), and‘DeGracie and-Fuller (1972) can be'used in situations -
agpropriate fortone-wax analysis of covariance. Of these, Porter's and
DeGracie and Fuller's procedures have_the more general applicability.

The exactgess of Stroud s method, however, strongly commends it’ for the
two—group design._—Although the DeGracie and'fullor procedure appears
less powerful than Porter 8, this~disadvantage may be more than offset by
the reduced blas and- the safeguards‘of the procedure which protect | Tﬂ\

against'theucorrection for aptenuation producing "impossible” slope

estimates. . ' ' N




S s . _ :
For the’ more gene;al/kinds of situations in which MRC. and factorial

ANCOVA would be approfriate, researchers may select one of the

AN

A

Stouffer—ﬂindley or Fuller methods. It seems clear that for data which
;o "~ can form to. the usual assumptions of nqrﬁality,'homosqedastic%ty, etc.,

the statistical estimation and testi/; procedures déveloped by Fulle?;

L3

s (1980); Fuller and Hidiroglou (1978), and Warrenm, White, rand Fuller

(1974) will prdve superior to the Stouffer (1936) and Lindley (1947)

‘methods. Fuller's methods preclude estimation’of singular covariance

_ matrices following corrections due to unreliabiliiy, yield significance .
Vs . b b ) LY ’ ‘
- tests which are valld for finite samples, and provide a mechanism for

¥

inébrporating informhtion about the sampling distributions of the

prediétor reliabilities into,the standard errors -of the estimators of the

»

|
1 true-score regression coeffidients. Consequently, it appears that the

Stouffer—Lindlef estiﬁatotsAare more sensitive than those of .Fuller and
\ e

‘ Qif\associates. v : .

¢ 8 . It is concluded that the existing methods provide several adequate -

4

st

_estimators of the true-score regression parameters. The major remaining

I3

. problems com ern‘sampling theory for the estimators of the structural
. S

. - , parameters. validity of signiffsance tests remains a significant

]

; \ .
W . question for all ofﬁthe estimators except Fuller's. This chapter
hY } . ' v R . [4

clarifies and refinég these.issues, and the simulation studies reported\.;l i

below add further insight.’ It is'pdinted out that questions in#olving

‘

) the type of reliability esi}mafeapo use and testing the assumption of /
homogenity of true®score regfessions constitute important problems for

future research.

)

Several ggamples of'the application of the correction methods

-

11lustrated Lhe kinds,ghaer;oréqof-inferénce that could have resulted

a

-




- : from errors of measurement in previoys investigatione of educational
- . . . . )

change. It 1s hoped that!the explication and evaluation of the’

attenuation—éorrection ﬁétbods provided ‘in this chapter will encourage

and facilitate their use in future studies. - ) .
. g
. C CHAPTER IV . .
The purpose of this chapter is to‘analyze the problem of determining ’

if a perfect .linear relation exist8 among two or more variables and to

review‘some statietical met hods that have been developed to estimate and.

: test lidear functional relations. By definition) a linear functional L
relation:(LFR) exists if the true scores on two (or uore) weasures are
perfectly correlate&fb Although most of the statistical work on LFR‘has
been;done by-econometricians, a problem has'been_inveetigated in the-
field of psychometrics which is formally identic¢al to LFR. .

. ¢Psychometrician§ have developed several statistical tests of the

s) L}
v hypothesis that two scales measure the same attribute except for
differences in means, units of measurement, and standard errors of
‘measurement (or reliabilities). When scales satisfy these corditions

they are said to be equivalent ‘or congeneric. As is demonstrated in the

chapter, equivalent tests are'related by a linear functional relation.

-

-

- The correlation between equivalént measures, i.e., between two variables

(unreliability) is 1.0. 1In this chapter the diverse theory and\methods

from econometrics, statistics, education, and psychometr/cs are

¢

/\ . . that have a linear functional relatidn, when corrected for attenuation
f

s collected, compared, and dntegrated. Several new resﬁits are derived for

the errors-in-vagiables problem which should prove helpful in analyzing

.. *

I d . -

"




change occuring inameasures which gontain errors of measurement. Several

- -~ .

ways in which LFR models can be, applied in studies of change are

discussed-and illustrated. o " _ {0 :
. “ . /J ' - N
The chapter explicates and compares seven statistical methods -
& -
designed to determine if the tfue scores from two or more tests are - §

perf%ctly linearly related. "They fall into one of three set s depending

. P

upon the type\\f information or data required by the procedure. The

first group contains three methods which require replicate. measures of

each scale, viz., Joreskog (1971), Kristof (1973), and Lord (1973). 1Im

4 the second set‘a{e three methods which assume information is available

v - L

" about the covariance structure of the errors of measurement. While such
informat ion may be obtained from‘replicated data, it can come frgm any

} ' other independent sources. These methods; which were'formulated'% ' é' 4;

primarily by Statisticians concerned with estimating and testing linear

. functional relations, incluge‘tme methods of kbopmansz(l937) and Tintner

(1945 1946), Fuller (1980), and JBreskog (1971) The third set of

methods includes only Fuller and Hidiroglou s (1978) procedure for

testing ‘matrix singularity when independent information about the

reliabilities of the variables is available. The method uses the

, reliabilities to adjust the covariance matrix of observed scores in much -

the same Ghy that the.estimates of measurement error varlances are' oo ,i
\ utiliied_by the procedures in the second group. Indeed, all seven . v
\\\ procedures are very similar in logic, if not in mathematical detail;

each uses information about the covariance structure of the observed -

easures 'Aand errors of measurement (from!replicate measurement's, error
- * -

|

|

varfance estimates, or reliability estimates) to estimate the parameters .W
L4 N N ~ :

* |

\

of the\linear functional relation. _ S

v
ira -

. \ - - .
. .
< .
4
\ : . , .
A
)
. . v .
.
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The choice of optimal method’for_estiméting and testing a linear

1 rd

functional relation depends.to a great degree on the complexity of the
. - RN 4 .

hypotﬁesized model andaﬁjp§édf sta available. When there are replicate
. r‘L"‘I;‘T »

‘ . ‘
measures for each variable, ‘any one of the sev rocedures can be used.
= ? h > ; b

! 4

With simple models, Krisqsf'sk Fuller's, or Fuller ahd Hidirog;ou'é
methods should prove genérallﬂ superior'to the others. | Joreskog's COFAMM

and LISREL models will be pref%rred for more complex models where the

! \

sample size is large. The methods of Kristof and Fuller can be expected

.

to be more robust to assumption violation, especially to nonnormality.

When only“estimafes of measurement error variances and reliabilities are

LU : .
available, the relative advantages and superior performance of Fullér's

~
i

methods should lead to their ééleqtion. The validity of the significance
tests for finitemsamples strongly commends his procedures. Althdugh
Fuller's prgceaures may be less sensitive in gertain aﬁplicatiops, their

- -

ease of computatidn and,the availability of a computer progxém"for making
. - kS .

the computations commend them.

- CHAPTER V

In this chapter we derive a general matrix represéntation which

. | ‘ . ;
expresses the parameters of the observed-score regression as functions of -

the covariances among the true and error components. \|Explicit
expressions are éerived for the bias in observed-score estimaﬁgrs of the
mean squafenerror, squaredﬁmultiple correlation, and sampling
diétributiqn of’the reﬁression.coeéfic@gﬁ?s- Thus, we are able to-
evaluate tﬁe‘paraméters affecting biasf ‘The kinds.of data and\q?nditions

are specified which are likely to lead to incorrect inferences éoncérning

@ ’




- regressions. The general equations expressing the bias in observed—-score

depends”

1

&
the determinants of true change based the results of observed-score

'

-

regre3sion estimators have not been presented previously and represent a
significant contribution of\ this resea{Lh. They enable educational

researchers to determinega priori the potential for misleading inferences

4

in planneg research.

. : !
- ‘The observed-score estimator of the mean square error 18 always,

positively biased, i.e., Increased in magnitude;relative to'the

true-score parameter,, by errors of measurements in the posttest, or ,

.

criterion, "variable. Thus, power is reduced and the probability of Type, o o

II error 1£ increased by unreliability'cf the posttest. Although a
"/
general statement can not be, made about th biasing effects of correlated

’

criterion and predictor measurement erro " with the kinds of data

. . .

typically encountered in studies of educational change we can éxpect blas
@ . s M

to increase as the correlations increase. As the variances of ghe

nrediCtor errors of measurement grow in size, éhenbias in the mean square

. . ) EN . . .
error also grows. This effect becomes especially pronounced as the "

i . ‘ .
measure¢ment error variances approach the magnitude of the true’ score
\ : ' .
varianc%s. Unequivocal statements about the degree of bias introduced by
’ ’

correlatiions among the predictor measurement errors can not be made. It-

ipon the patterns of both the true score and measurement error

.S . ‘ . o ~
intercorrelations. If it is assumed that all measurement ‘errors-inp the .

1

dependent und -independent variables are mutually uncorrelated, it w&ll be

generally trxue tha

e the squared mu&btﬁie correlation 1s an'inverse

E

decreases poWer. S

function of the variance of the regression residual we know that the
' : . : . S ¥




- o . 8 \ . ' S
* - ki x - - |
factors which positively blas the mean square“error negatively bias the

estimator of the true-score multiple correlation coefficient. Although

the parameters’effecting bias are seen to be highly complexf'the overall

_‘, effect of predictor measurement errors will be to inmcrease the bias in
o ‘ ' : . o ' B
the estimate of the coefficient of multiple determination when most- error .: .
- 3 ~ ' ° - . D N N M -
covariances are positive and rii:tively small in size. Thus,

observed-score regression analyses of change on the'average will
undere:timate the'goodness of'éitfof the true-score nodel in most o
edncational applications} ‘%ias in tne estimator o? the sampling

T distribution of the vector ofcobserved—score regression coefficients also

. depends upon the covariances among the true scOres and ampng the errors .

= 4 N ° . hd
~

- . - of measurement. The same factors which affect the mean square error and

"

squared multiple correlation have similar effects on eétimators of the ‘

~

standard errors of the regression weights. The main determinants of the - C -

~ joint sampling distributions, however, are the patterns of the joint

LY

distributions of the true and errog componenﬁs- General stateménts about

: ' " the magnitude and direction of %ig:)can not be §ade- Thus, the general )
i ‘ effects of bias on t-tests for the individual coefficients are difficult G
\ _

to assess. The forﬂulas presented in this chapter do enable'researchers

to-evaluate the potential for bias in any specifiec set of> circumstances,
- hod N i 1]
however. Therein lies their value. . - .
. ; R .t R . . . \

H

a ‘ CHAPTER VI ) '

. » ‘\

The purpose of this chapter is to- develop a ‘method for investigators

Y

a
’

/ to easily assess the possible impact of measurement érror on statistical : S

analyses of change- Using the results of the preceeding chapters, .

egpecially those of Chapter V, an algorithm is developed which takes as t




‘-

input estimates of the parameter values of the structural relations.among'
S , , * >

the'lateniwvariables (which the investigator thinks are close to the true “
\ . . . . ¥ - . ~

- [

A values\a_priori) and outputs the expected values of the correspongiﬁg ‘ . e

- observed-score regression parameters for a prespecified -sample. size. The

, .
\/ N R ' ¢
. . .
.

logic of the algorithm is explained and.1llustrated with a simple example

of the effects of external{locus of control orientation on change 1in
w . 3§ “

0
- -~

science achievementﬂ ) .

. A ‘ . L “ ,’ - B - RS
As part of this research program, the algorithm was implemented in RS
“the form of a FORTRAN eomputer program, which can be easily installed in -

¢
>

most software libfaries. Input to the program consists of information

5
oy -

about the’ covariances -among the true predictors, the reliahilities of the’ e Lt

observed predictors, and the truefscore regression coefficients. The

- )

3

proéram outputs values of the true-score regression parameters and those

of the cbrresponding observed~score regression parameters. Comparison of

B~ . e .
) the two sets of parameter.values allows one to assess the degree of bigs
g . / . 3
likely to occur in observed-score regression coefficfents as estimators '

-

. " of their true-score counterparts. In the final section of the'chapter, a
: \ ‘ /

comprehensive application of the'computer program is presented. \

Use of ‘the program will enable investigators to become aware of the

- A

» ~

fﬁays in which measuremengﬁerror may bias regression analyses of change-

Making this evaluation before data collection is completely analogous to

¥ \ ) o
qarryi%g out a power analysis. "The results of the assessment may lead
;“ . . .the investigator tovmodify data collection-plans. For example,_the "
@ ) ‘ R /
2 _ program‘may reveal that the reliability of the pretest must be increased

1f accurate inferences are to be possible. The assessment may indicate

.

that biasﬂcan not be avoided easily and prompt the investigator to gather /




the data in such a way as to make the use ofJattenuation-correction

%

néthods or multiple indicator (LISREL) models possible. Also, as with A

power analysis, the program can be used post hoc to.determine the degree-

% ' of'caution one should have when interpreting the results of the o
’ r AN
regression anaIyses of observed scores. «~[n many situations, like the ‘one

. .

described in the example in this chapter, it will be concluded that the

) . possible bias in the observed-score regression estimators was so great . )

i
vt

. ' that any inferences must be regarded as completely suspect. : .
=N ~ "~ s

. T . .

. ' - o . N b Tl . . o ° R ' o ) - o

) » - CHAPTER WVII _ S e

- X - ) . . ‘,
Chapter VII reports the results of the Monte Carlo experiments "

: designed‘to evaluate the performanceuof various multiple regression and

-

. analysis of covariance methods that correct for errors of measurement.

The objective of this research was. to determine which, statistical s
, ! , 4 -

© ! [4
procedures for estimating the structural parameters of cqang'

11- demonstrated the least bias and most'power. Only when this information Tt
~1s provided to educational researchers can they choose an estimation
K.technique that is optimal ‘for their purposes. The results of these

. simulatlons can’ be utilized to reduce the chances for drawing faulty

concluglons about the effects of treatments or individual differences on

e true change analy%es of observed scores. We were fortunate to be able to '

<

'derive a number of analytic results which obviated the need for some of _
[ u,m )
- the simulations that had been originally anticipated.p Y °

//(ﬂ\\ Two simulation experiments were conducted. The first compared
regression methods, and the second evaluated analysis of covariance
procedures. Different simulations were required because the MRC and .

ANCOVA correction methods required different information. Specifically,




- -

adequately across the conditions simulated/ The degree of bias in both

effects of six factors on the relative performances of the OLS,

-

individual scores were needs for the ANCOVA simuiations, while Lnly
covariance matrices were required for the regression studies.

. In the first”experiment the performance of the Stouffer-Lindley
method was compared‘with that of the Warren: White, and Fuller‘(19}4)
procedure. Both of these were contrasted with traditiooal OLS regression

analysis of the observed scores. Covariance matrices of true, error, and.

observed scores were defined according to the equetions given in the ;}?}

preceding chapters and randomly generated using IMSh subroutines. The

Stouffer-Lindley, and Warren, White, and Fuller methods were
systématicallyﬁassesse&: the effeet of the pretest, the pretest*research
fractor c0rrelation, the pretest reliability, the posttest reliabiliég, |
the sample size, the effect Bf-the research factor on true change, the
sampling herianﬁe of the pretest reiiapility coefficient. The
performance of the methods was measured for many statistics, iqcluding
the mean square error of the model, pretept regression coefficient, and

the standard error of the pretest regression weight. Main interest,

however, concerned the bias and sensitivity of the regression estimator

-

-for the effect of the research factor, on chahge. Bias, power, dnd

prohability of Type I error for the three methods were evaluated as

relative’ and absoiute criteria. The results Andicated that both the ?
Stouffer—Lindley and Warren, White, and Fuller methods performed

null and nonnull conditions was small, uSually less than 10%. The
direction of the bias, however, was uypredictable. In generﬁl bias
increased ag the effect of the pretest (or, pretest-posttest correlation)

and the pretest-research factor correlation increased. Bias decreased as




!

the reliability of the,research factor grem. Empirical alpha‘valnes did
not.différ svist antially_from nomfnal levels. Power was enhanced byw
pre-post correlation,'reliability of both pretest and research factor
scores, and measurement . As expected, pre\;st-research factor

: . -
cfrrelation‘adversely affected power. The Warren, White, and Fuller

method was superior to the'StoufferiLindley”procedure,when\the sampling
variability of the estimators of the pretest measurement error’ variance
(o?ﬁgeliability) was‘recognized: The former method explicitly .o : &
incorporates information concerning the variability of reliability
esthmators. As the sample slze upongyhich the reliability estdmate is
'based becomes very large, the~two methods produce virtually idéntical
result s. With small sample sizes, however, the Stouffer—Lindley .
estimators can perf:rm very poorly under certain sets of conditions, We
conc lude that the method ofTWarren, White, and Fuller can be recommended
as the multiple regression method of choice for.studies of edncationaI'
change. |

'%ﬁResults from tne second series of Monte Carlg studies on ANCOVA
.methods produced results that closely parailel those optained for- .
regression methods.. The &ffects of seve%al.factors, €8,

pretest-posttest correlation, ‘on the bias and power of estimators\gf\‘~‘*,y//’

covariate—adjusted means were assessed in the two-group ANCOVA design.

e @

The DeGracie and Fuller method demonstrated superior performance to the .

- \

Cohen and Cohen and Porter methods when there was variation in
reliability estimate and sample sizes-were small. The differences in
performance among the met hods diminished as sample size increased. The

\ & I o N
use of the DeGracie and Fuller ANCOVA method for estimating the effects

¢




. |
\

.

of treatment groups on true changé 1s advocated for the kinds of * }

sipuations generaily found in educational research. The availability of

a computer program for performing regression and covarlarcde analysis by
v, * ~ . . ‘ .
the Fuller methods greatly facilitates the application of these &
true-score estimatio prbceduresegﬁ\jiyﬂies of educational growtl. .
. — ot . ) - . i
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CHAPTER II _ ' .
. - 2 & -
PROBLEMS CAUSED BY MEASUREMENT ERROR IN ANALYZING CHANGE

> [

.

o INTRODUCTION

The objective of this ehapter/is to provide a mathematical analysis

of the effects of measurement ;rror on statistical models for analyzing

change. The general situation that we coneider involves pretest and

posttest measurements on some attribute that is expected to ehange as a
ke h 4

§unction of intervening experience (e.g., treatment) and background

characteristics. A general linear model which has been proposed by
several authors for studying change is presented, and definitions of
;;“1 | parameters of change and prOCedures for testing hypotheses’about change
as a function of treatment and background characteristics are developed.
‘Then a simple test score model which takes the observed score as a Iinear
function of an unobserved true (or latent) variable and a random error
e . component. 18 introduced. The mathematical.model of change is then
i " rewritten to incorporate this measurement'model,‘thus exﬁlicitly
recognizing rhe fact that the variables are not perfectly feliable.

2 . - ' ~

The estimators and tests based on the obsérved-scdre distr}butions

-

are then evaluated in terms of how adequately_they estimate the - ,

. parameters of the true—score distribution or test hypotheses about true

- S——
change. Briefly, it is proved that the observed-score estimators are

P . - N

PY )
biased for the structural’ parameters, the magnitude and direction of bias

being a complex function of the interJorrel;:ions and reliabilities of -

3

the variables. Next covarlance structure analysis 1s used to explicate'

the relationehib between the observed-score and latent-varfeble

parameters. This"enables us to detefﬁine values of the observed—-score




-

parameters when given the corresponding”values of the true-score
parameters and reliaﬁility information.

It should be pointed out that in this chapter we do not treat' those
situations where aﬁsignment to treatment has been made on the basis of an
unreliable pretest. Following the pioneering work of Goldbgrger (1972),
several statisticians (Kenny, 1975; Overall;ﬁ Foodward, 1576a;.Kubin,
1977; Weisberg,‘1979) have demonstrated that unbiased estimators of the
differences between the,treatmenf and control groups in true change can
be obtained when this kind of sélgction proceés is employed. Furéherm;re,
the effects of measurement error when group regressions have heterogeneous'
slopes. lies beyond the scope of ;his chapter. The reader is referred to
Rogosa (1977b) for aﬂ excellent; cg@prehensiye treatment of the effects
of measurement error on the Johnson-Neyman-‘technique.

. &

, GENERAL STRUCTURAL MODEL OF CHANGE -

Before discussing the‘bias caused by errors of measurement;the
general framework and.modelﬁfor studying change must be developed since
this has been an issue of some conttoversy (cf-VCronbach & Fugby, 1970;
Keesling & Wiley, 19%7; Linﬁk& Slinde, 1977; Werts & Linn, 1270; Wiley &
Harnischfeger, 1973). Following Wiley and Harnischfeger (1973), we wish
to consider a structural model of the effects of initial status
(pretest), preatment program, and background characteristics on final
‘status (posttest)&with respecf to some quaﬁtitative attribu:te.

The model diagrammed in Figure 1 shows the possible causal relations '

(assuming the model is correctly specifiéd)-among these four factors.

a

Insert Figure 1 about here




ol ' 1,
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Since the model is represented along a time dimension, the background

variables, e.g, parents' SES, sex, or aptitude, are depicted as most

v

remote from the posttest. These background characteristics can affect

either initial status (solid arrow) or the probability of assignment to

treatment programs when subjects are rot randomly assigned (broken

arrow). Initial status can influence final status (solid arrow) and
‘Lreatment groups' membership when assignment to groups is based on
pretest scores (broken arrow).

»

v Al . -
Lettipg Xl represent initial status, X2 treatments, X3
¢

. . | v ’
background characteristics, and ¥ final status, the model may be written

in symbolic form as: . ~—

Y = by + b1X; + boXy + b3X3 + e

where bJ are structu:al coefficients characterizing the'multivariate ,
‘distribution of the Y and XJ, and e is a stochastic term symbolizing
sampling or specification error. In most applications the bj are
partial regression weights indicating the contribution of X:l to Y and

‘could be subscripted as'byxj.xj,- This notation more clearly

demonstrates that referenle\is to the effect of Xj on Y while

controlling the effects of the other Xy1 (where j' # j)

If we define change or growth as the difference between«final and

initial statusee, simple algebraic manipulation of Equation 1 allows us

to show the relationship of this model to one that takes change as the
dependent yariable. ‘Subtracting Xl from both sides of Equation 1, rwe

obtain:

C = Y=X; = by + (b~1)X} + bpXp + b3X3 + ¢ -

i




.

where C designates change. 'Thus, b2 and'b3 are the same in both

equations while the weight for the pretest in Equation 2 is simply one
unit less than the comparable coefficient in Equation l. With this
approach to defining change, clearly there is no need to deal with aggugi ’
change scores as Werts and,Linn (19?0) and Wilei and Harnischfeger‘(1913)

have pointed out. The coefficients specified in Equation 1 can be

interpreted as parameters of change. -

The growth model represented in- Equations 1 and 2 is defined in terms,

.

.of true scores or latent variables. fhat is, the equations specify the

structural model in the séme terms as does the theory, i.e., as relations

among.hypot etical constructs (cf. Cronbach & Meehl, 1955). In fhis S
A L SR
Moy L
context, the bj assume considerable importance as'Larameters of the lf E
hypothetical mechanism which generates the observed data. Thus,ﬁthe bj

indicate the strengths of: particular connections among theoretical /f

constructs and, collectively, define a behavioral or psychoipgical law. -

In almost alt research on change .the investigator~seeks'information about

‘the form of the structural model defining change in status‘for some

behavioral domain and estimates the magnitudes of the bj' ~If the

constructs or latent variables could be precisely measured, it would be a

\ N

relatively simple procedure to estimate the b, from the measurements

3

and to evaluate the adequacy of the model in accounting for the observed

.

data, Unfortunmately, in the social sciences our capability to measure
theoretical"conet;ucts without error is limited so that-estimating and

testing structural models becomes highly problematic. .

\ R Fl
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‘depicﬁed in’

/

A g

To describe the mechanism which more adequately reflects our beliefs

‘about how the observations came into being, we construct the model

i

Insert Figure 2 about here

.

Figure 2. In this schematic, recognition is givan the f;:§ that one's

-

measurements are 'fallible, i.e., contain errors.of ‘measurement. Now a

system of struct%ral‘equations is required to specify the model.1 We

add to Equation 1 the following: B
x1 = f10 * B+ up (3)
. xp = f20 + £21%2 + 2 (4) T
. X3 = f3(:);>'*: £31X3 + u3 ‘ )
y- = fyo + Ep¥ v (6 -
(@here Xy and y are Siéervgd or measured values, the Xj and Y are trué 5 r

scores or latent variables, the u, and v are errors of measurement, and

3

the f>qoefficfénts are parameters specifying the regression of the <

3

observed scores on the underlﬁing factors. The fij are, iﬁ“fact,

L 4

factor'ﬁoadings. 'The reader may recognize this as an application of
* Joreskog's (1971) theory of congeneric tests. Using ve?;or and matrix

notation Equations 1 through 6 may be written coﬁpacﬁiy as _

¢

Y= b B tex - .
= foxt ExX+tug

- e

Yk " Loyt EyY + vk

’

where underscoring is used to designate~vettor~(lower case) and ma

© case) quantities2 and E-x is a diagonal matrix with-fhe factor loa

the principal diagﬁoal- Together Equations 7;‘8 and 9 constitute a LInear

-




§Fructurai RELations (LISREL) model as defined by Jreskog (1972, 1973).
-Equations 8 and 9 specify what is termed the measureﬁent model, ehile-Equation
7 iepresents tﬁe structural or_causal relation.‘ Although social reeearchers~
gtate their hypotheses'in terms.cf'Equations 7-9 and would like to estimate
the values of bj and- f 13 contained therein, most are forced to cerforﬁ a
regression analysis of the observed scores (treating them as 1f they were the
‘true scores)- This situation is depicted in Figure 3, which shows that the

A
xj have been substituted for the X . The regression parameters giving the

p ? _ ' Q ( A

Insert Figure 3 about here

©

% ’ ) .

expectation of y for fixed x, are designated with primes, b'j, to N

3

indicate their_correspondénce to the respective structural parameters,
bj. Patently, the b'j will equal the corresponding bj only under a
very limited set of conditions. Usingaestimatogf of the b'j as

. estimators of the b, is unsatisfactory in most applications, because

3

the B'j are neitqgr unbiased nor consistent estimators of the bj.

1

Therefore, inferences about the nature of change and its determinants can

be 1naccurate ‘or misleading if based on the regression estimators, b’ j*

2

In the next section we demonstrate the bias and inconsistency of the

' gbserved-score estimators and describe the potentially deleterious
‘effects of measurement error on inferences about change.
. . 4
PROOF OF BIAS AND INCONSISTENCY 3

.

In this section we consider the c&hsequences of %singithe B'j as

L]
~
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t
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- ) 7 . t
estlmators of the g&gdctuﬁgl coefficients. For ease of exposition, the
TN , = _ ]
case of one X variable is taken up first and then the two-predictor
case. Folldling proqfé for these cases, the -proof of bilas and

inconsistency for the general multiple variable situation is derived.

The Single~Predictor Case
‘To péove that the g;dinary‘égasc Squares (OLS) regression analysis of. s - '
'-the observed écores:produces biased and inconsistent estimators of the |
- :structﬁra;uparameters when there is a pésttest and a single ﬁretest, we

, begin‘by writing:

. V : =b'lg+b'ix; +e', . - (10)

XS

and lettihg £, =0 and fll = 1,0 in Equation 3 and £ . = O and £ . = 1.0

01 ) yl . yl , T
in Equation 4 - ‘
« X1 = X 1 + uy ’ _. . (ll)
y =Y+v . ' (12)
/B'i - (x1x - 1) (Y - ¥) o S8yx; , ' (13)
] Zy (x1x — ¥1)? 5x, 2 ;
N\ -~ a K a
% and b'g= ¥ - b1¥; . (14) A
| ] , ,
& : .
- The summation is taken over k = 1 to N units of obser¥ation. Substituting

Equations 11 .and’ 12 into Equation 13, we find

Z:[(Y-*-V); (Y +'3?1 [(Xg +up) = (X +up]

AL +up) - (K] + ap))?

’.c B'l

:

ST (xRy) + T~ X v=v) + ZE-T) (ug-up) +Xv-V) (u-up)  (15) -
= (x1-%1)2 + 2Z (X1=Kp) (ug-uy) + Z(upmup)? . S

. 5] .
~ On the assumption that E(xlul).- E(le) = E(Yul) = 0, the '/)

.-

second and third terms in the numerator and the second term in the

-

o K .. 11 - 7




E

denominator approach zero as %heiaample increases without limit. Thus,

the probability limit for b'y is givenas = .
. syx:, + SBvuy
plim b'y = ! M . '(16)
sxlz + sﬁlz .

2

Making the additional assumptiom that errors of measurement in y and X

3

‘are uncorrelated and noting that.by definition we divide both the

numerator and denominator of Equation 16 bixsxz to obtain ] - 7
by = X - (17)
2 ~
8X
) a
o ap b1 '
ey plim b'l - — 5 . (18)
Su ;
1 + - :

The probability limit of ﬂ'i does not equal b} but underestimates it.

Thus, the OLS estimatof.of the slope of the regression of the posttest on
- } ) " ‘ .

pretest is an inconsistent estimator of the structurdl parameter. By
t \ . ¢

siﬁilar stebs and noﬁing that E(e - Blnl)(xl - X1) does not equal zero, it

fpllows that 3'1 is a biased estimator of b1,3 From psychometric theory
(Lord & Novick, 1£68) the population reiiability of the observed variable

can be written as °

x . )
1 A

\ 2 2
8 8 ..
ry; = X1 - X1 . C19)
. 1 ul X1 .
Usihg this identity Equation 18 can be rearranged into a more familiar form:
¢ 2 ’
]
lim b’ 0 = X2 by = rizby - (20)°
p m - 5 ! B
2 ‘ 1

X1 . - | | )

II - 8




" Alternatively, o j

-,
: b' »
by = 1 . , . (21)
1'11 .

,'Fbr'additional details concerning this'proof the interested reader is

oreferred to Bohrnstedt/§1969, pp. 12@-125), Cochran (1968, pp. 651-652),

Johnston (1963, pp. 148;i5t), and Schmidt (1976, pp. 105-115). 7

Since T ‘1.0, b 1 ‘bl' The relationship (structural

,coefficient) between the latent variables is always greater on average

than which would be inferred from the OLS regression of observed scores
4 ? t fos
when these vbservations are<fallib1e. Thus, er¥ors of measurement

-

attenuate the regression of Y om* Xl, that is, they bias the estimate
of the slo e toward zero. Note that it is the errors in x)and not those

in y which cguse the bias as long as E(vul) - 0. Since a value of 1.0

for Sl'ﬁculd indicate no expected change from Time 1 to Time 2°.

measurements, the attenuated estimator 3'1 wili lead to. the faulty

s LA

inference that persons above and below the pretest mean (il = ;1) will

show more absolufe change than is actuqll&'the case. Of course, this is

¢

the well-known regression to the mean phenomenon caused by errors of
measurggent (Campbell & Staﬁley, 1963).: The point is that inferences
about true change and about true change as a function of true initial

status (Thomson, 1924; Werts & Hilton, 1977) will be inaccurate because

“ »

of the unreliability of the pretest measurements(i
. o . ‘

. " The Two-Predictor Case -

»

It is now our purpose to 'demonstrate the bias and inconsistency in

the S'j two predictor case. where X1 fg?a pretest and X2 represents another

/ e .
/ .

/

S




determinant of change, either a treatment or background variable. If

this second variible is classificatory, i.e., regresents membership in, a

treatment or sociodemographic group, then X, becomes alcoded variable,

2

and the b2 1s a function of the mean differences between groupa.,/Thus,

anal&sis of covariance)éan be represented as a standard multiple
regression problem (Cohen & Cohen, 1975; Overall & Klett, 1972). Our

concern is with the structural model specifying change®fas a function of
CoNy
initial status and treatments or bac kg round characteristiCSq This is

most easily dealt with by expressing Y as a function of Xl @nd X2:
+ . ’ ‘ :
' Y= bo + blxl b2x2 + e ) . (22)»

We begin with the standard definitions of the structural parameters as ™

given in any advanced text on linear models: o

2 - - . .
8 & 8 8
by = X2 1X; xlxz 22.9) , / (23)
8312 ?Xzz - E‘Xlxz2
2 - 0 )
by = 5X)° SYXp " SXjXp SYXy . (24)
g . . 2 .
sx;? ,*‘Xz2 ‘T 8X)Xp ’
and bo '-l' - bl}-(]_ - bziz . ' . /_—/’ (25‘?

Adding\the stipulations that .xg9 = Xy + dz apd ‘that E(ujujp) = E(uyv) =

E(Xjqup) =E(Y3) = E{¥;) = 0 to the bivariate regression model considered

above, we can derive the expressions for the/expected values 6f b'j as -

Lt

fuhctions of the b, The formulas for the observed-score estimators

i

analogous to Equations 23-25 are

N - - ..
2 "2 Byx1 T SBxixp Syxj ) - (26)

'y = - , .

© By 2 Byx,2 ' sxqxp? - - k




T S S

- A g oA ~
. Sy, 8 -8 8 )
B'fp' x]1 sz  TX1X2 CyX) , . @n
o +8xy? oxf” - sxpxg” i ‘ -
L : . ’ l 3}
and . b@'o =¥ -b"h¥ - 115'2"‘2 e (28)
, _ L |

™

- Using the psychometric identity'thaé 8 = g - under the stated
Wy '

assumptions (Lord & Novick, 1968) and substituting expressions for the

1

. : . - ]
true scores intc Equations 26 and 27 the/following results are obtained:

(sg,2 + 84.2) Syx, =~ 8 5 ,
B, = 9] _ ui pes| X)Xp 5YX) , (29)

B, K ]\- . /\ /\ G
a (sx % + suy?) (8xy2 + 8yy?) = 8 %7

. 2 2 -~ - ~ ~
and 5 - (sx;® + &)%) syx) = Sx1%; 5YX)

LY

2 ' 2 3 - 5.2
i"@‘ : , (5x,° * 84y ),(sz + 8uy") < 8x1%y

Clearly the b'j db not approach the bj in.the limit unless sul2 =Sy, = 0.

» A
Thus, the.b', are not consistent estimators for-the structural

3

coefficients. As with the bivariate case, the bias of the b'j follows"

‘ » ’ ,

| | from the fact that the expected value of the govariance of the residuals
o .f =
from regression and the true Xj values does not equal zero. Equations

29 and 30 reveal how potentially misleading the observed-score regression
* . L ' : N
weights can be as estimators of the structural coefficients.- The ‘value

?

of b'l caqybe greater or less than hl'd%Pending_upon the magnitude of

; sulz.' A similar result_ holds for b'; and by. While in the

%

bivariate regression case the slope estimator is attenuated by errors of

measurement on the avérage, in the multiple régreésion'case the -value of
, b', can ‘be either attenuated or "accentuatéd" (Wiley &,Horhik, 1972) by
o . . . ,

measurement or observational errors.
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The fact that b', can be statidtically significant with a negative

: 3 .

- gign while the structutal parameter has a relatively large positive value
. : - R )

has lead many statisticians and psyehometricians to recommend strongly

against the use of b', as estimators of the bj' e.g.; Cochran (1968),

J
Cohen & Cohen (1975), Cronbach-(1976), Hummel-Rossi & Weinberg (1975), .. .
p aud’Logd (i958)1 The bias in the observed-score Fegfesﬁion welghts o
. attribugaﬁlegte measuremene error certainly poseeJe grave problem for r Ly
longitudinal research. {t cen produce inferences that tﬁe effeet’of
Treatment 1 relative.to Treatment 2 was harmful whee in fryth it was ' ' ‘

-

beneficial. Or, it may lead to conclusions like high SES cﬁildren » h;;

.changed more than low SES children when, in® fact, relative change was in
the opposite direqxien. 'This would seem an intolerable state of .

~ affairs. Moreover, the biases in the regression weights are not the only

DR

g-para;eters of change affected by measurement error. Tﬁese will be
described after ehe expression of the bies in the b'j has been derived
for the generdl case of J predictors.

E:j;_ ' ‘ The Generei Case - ///a | p

» . Let § 4y and §-x; be the v;>fgpce-cgvariance matrices fé the;qrue‘ . v

and observed scores, §-uu the covariance matrix of the errors of |

measurement in the x varilables, 8yy = 8 the vectors 6£

t yx
predlcter-cri;erion covariances and b and b' the vectors of regression
» B ;

i welghts for the true and fallible variables, respectively. Then it
! _ \ . .

.follows that o : : _ ' .
. »
"bSxx =8 X — (31) " .
B' S x™ 8 yx "8 WX , 32 o«




e ¥

and b Sxx =b'(Sxx+5uw) , (34)

’ L}

where the vectors b and b' are transposed to make the quantities conformable

for mnltiplicetion. Postmultiplying both sides of Equédtion 34 by §XX-1

we find that b can be written as a weighted function of b' (cf. Lindley, 1947,

pp. 227, Eq. 40):

, b=b' S S xx7t : . (35)

L " ' : W
This matrix product indicates that unless the Xj are uncorrelated, sthe

bias in b' as an estimator of bj depends not only on the eri}rs in

h|
X 4 but also on_all intercorrelations XjJ'(j * 3. 4 Thus, even when

Xj is measureg perfeetly so that x.1 = Xj, 'j still will be a

biased eetimator of bj' . ' Y _
! I8 v
Errors of méasurement, therefore, should eng?\their most damaging

effects in survey ‘and Quasi—e?perimental studieg where the lack of

experimental control will result in,sqbstanﬁialgintercorrelations among

the pretest and factors associated with change.. In these kinds of

studies of change the weight associated with the pretest "undercontrols”

(Wiley & Hornik, 1972) or insufficiently adjusts for differences among
’ * . : '
individuals in initial status. In ANCOVA the regression correction for
C i
covariate (pretest) differences between groups may be too 1ittTIe or too

3

great, and the resulting cpmparison of differences in adjusted posttest
: b _ , B
means will be biased if| the groups differed initially (Snedecor &
Cochran, 1967).. In predictor sets where some of the variables are more
s ) : . ‘

reliable than others, part of the contribution of the less reliable

predictor will be attributed,to the more reliable predictors. However,

other factors assoclated with quasi. and nonexperimental studies may more

-~
4

b' (S xx + S uuw -8 YX et . ' (33)

- 1"' -

»
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" .
than offset the inadequate adjustment due to meaturement error (Cronbach .

et al., 1977; Heckman, 1979; Olejnik & Pdeter, 1981; Weisberg, 1979).

N B

Under some circumstances, no adjuétment at all for the pretest reduces

the bias in b, \ ‘ .

N
. EFFECTS‘QF MEASUREMENT {RROR ON OTHER ESTIMATES ° -
% ! - ‘

In‘ addition to\the ‘roblemé with the regression weights there are
S , y

othef potential pitfallslto interpreting ‘the observed~score regression
\ ! . -

‘results as providing verdical information about the hypothesized
strucﬁural model. Some of these wi%l be briefly summarized. First,,
errors of ﬁqasunement willwma}e the ovefall ddequacy of the model-appeaf
legs_than if the variableé were: perfectly reiiable. Both indices of thé
_gpodness.of fit of the data to the %odel, the coefficient of multiplg
corfelation or_determina%ign GRZ), ;ﬁd the megn‘squére error (M3SE), or
residual variaﬁde, will be biased by'observation#l errorse. R2 will be
attenuated ;nd MSE iqflated\on the average (Bohrnstedt, 1969; Cochran,

1968: 1970). When the Xj are uncorrelated,‘bochran (1970) has shown

that the degree of attenuation in R2 is a function of tle reliabilities

5

of y and the xj:

R'2=R2rgy Ty o (36)

\

where Ty 1s a weighted avérage of the rjje It is appafent from the formula

for the mean square error or the residual variance from regression,

8e? = sy (1-R'2) @)

that errors of .measurement will have a proportionally greater effect as

R? increases. .Although he was unable to derive a closed form

expression for'R'2 when the X are'cbrrelated, Cochran (1970)

J

<
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. suggests that Equation 36 "may serve“@s a rough guide to the effect of

4]

errors of measurement on the squared multiple correlation in many

%

applications. The value of R'2 may be up to 10 percent higher (than .
Equation 36) if most correlations are positive and harmful and 'the Ty4

exceed .7, and up to ‘%’highé; if the rjj-are as low as .5-" The
decrease in explained variation means that the power of statistical tests

will be lowered. While the errors iﬁ.y do not contribufe to the bias in

the b'j as long as v is uncorrelated with Y, Xj and Uy they do

. contribute ﬁo_lhe reduction in R as indicated in Equation 36 and thus ’

also to loss of power (cf. Bohrnstedt, 1969; Cleary & Linn, 1969;
Cochran, 1968, 1970; Nicewander & Price, 1977; Sutcliffe, 1958; Walker'& . ~

Lev, 1953; Winne, 1977). : o Y

,‘ ¢

Although the raw partial regression weights are not biased by errors
in y, the standardized partial regression weights and path coefficients
o are attenuated by v. Additionally, both %redictian and simulation will be

affected Byderrors in y. ~ . .

€
”

. 'Thg final comsequence q£/g;roz8'in’ﬁéasurement in analyses of change
i‘t - . B . K -' / . B
concerns the distortions they cause in analysis of covariance. As

pointed out pteviduély, errgrs of measurement in the pretest will bias

W

the estimates of adjusted posttest differéncag if the‘groupé differ in .

mean pretest scqres‘ggfmpkell & Erlebacher, 1970; Dunivant 1975, 1977;

Kenny, 1975; Overall & Woodward, 1976a, b; Rubin, 1977; Werts & Linnm,

1971). ANCOVA is_predigaﬁed.dh_the‘assdhption of homogeﬁeous pooled

within-groups regressions of covariate on criterion. Whenever the slopes
are heterogenous, or equivalently, there.is a covariatebly-research

'factot'interaction, ANCOVA 1is no .longer appropriate. A mathematical //

model which evaluates the differences inlregreSSion lines must be

v

. .
. ' ’ . -
I. . N '

. & . \
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Q\ T
adopted. This may take the form of the Johnson-Neyman technique or

. - N
product-vectors in multiple regression. - s

L Recent ly, Rogosa (1977a, b) has demonstrated that the loss of power,

\

i

due to errors of measurement will Cause the investigator to fail to

reject the hypothesis of homogeneity of regression in many situations

where it is false (TYpe 11 error). Thus, ANCOVA will be utilized on many

_ occasions when the Johnson-Neyman technique or analysis of partial

variance (Cohen & Cohen, 1975 are appropriate. Faulty inferences about
. “
the underlying causal model will frequently result. The reader 1is

g .
. referred to Rogosa 8 (1977a, b) papers for a presentation of the biasing

=
.effects of measurenent error on the Johnson-Neyman technique. A recent

search of the literature (see appendix) located only one reference

(Busemeyer, 1980) out of over 400 articles surveyed which treated the

~ k4

effects of measurement error on estimators of nonadditive or interactive
effects in multiple regression (Dunivant, 1980). It is fair to conclude

ftom the demonstrations presented in this section, that in analyses of

! e
change, the potential for errors of inference caused by errors of

measurement 1s very great. This proglem should be of considerable

0

) . ' 4
concern tc any 4dnvestigator who collects test~retest data and wishes to

explain change in scores during the interval. In the following we review

several examples of the magnitude of the bias in b’j as estimators of bj.

-

o\

DEMONSTRATIONS OF BIAS CAUSED BY ERRORS OF’yEASUREMENT
Several statisticians have constructed hypothetical examples to,
illustrate the kinds of problems caused by errorsjgf measurement .

Cochran (1968) provided the coefficients reproduced as Table‘l.

, II - 16
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Inspection of the entries reveals that in the two predictor casé when

a

bl = 2 and bl = ], and that the estimatérs b'l and b'2 may

simult aneously underestimate both Bl and gé or overestimate one and
underestimate the other depending upon the respedtive reliabilities of

. xy and xp. There is.even onébexample (r33 = .6, rop = 1.0, rxlxz -}.3;
.hhere'a'é§$lz. In an exémpie cons%;ucéed-by-Bornstedt and Carter (1971)

the\observed-scﬁre estimate and structural goefficient had opposite signs.
If r), = Ty, ™ .81, Ty ™ 1.0, ryxz = .7, and ry¥1/3¥*2 = .031,.fhen
b', = .03 while b, = -.186. / . A

A different approach to demonstrating the blas in partial regreséion
coefficients has been pursﬁedib§ Corder~-Bolz (1978), Hanqéhek and Jacksomn,
(1977), Ladd (1956), Marston and Borich (1977), McLeaq, Ware and McClave
(1975), and Portéf (1567). These statisticians have employed Monte‘Carld
or siﬁulation techniques to generafe data which conform to a structural
;model whose parameter values are specifzed a priori. Hundreds or
thousands of samples of simulaﬁed ébservations-are then anglyzed by OLS 4
regression and the mean and variance of the resulting b'j are compared

with the preset b,. Thus, Hanushek and Jackson (1977) generated 100

3

samples of 200 observations each from a model with parameters

bgp = 15, by = ﬁ, by = 2, and rxlxz- O. When rp; equaled .8,

the medn estimates were b'l = ,99 and b'2 = 1.,31. In another

simulated gxperiﬁént theé™Heans were .97 ard .36 for b'l and b'z,

respectively, when the reliability of x, was lowered to .4.

Corder-Bolz (1978), Mchean et. al. (1975), Marston and Borich (1975),

e —

and Porter (1967) investigated the effects of measurement error in the

coY/riate on tests of adjusted group differences in ANCOVA. McLéan et al.
Fagan S .

.y




N

>

(1975) varied the reliabilities of the dovariate within and aifps7 ups,
- \ ' /

the<%ample size, and the mean differences on the covariate hi;yéen the

. .

ANC

experimental and control groups in a 6 x Rx2x2 factorial ovA

design. Both the empirical alpha level (Type I error probabilities) and

empirical power (l-Ty error probabilities) of the hypothesis of no

\_c

;djusted posttest "dif erences~were evaluated for 2000 sets of generated

obserwations. 'The results indicamed that 1if the,groups pretest %eans were

;
.

equal (no pretest-group'factor;éorrelation), then the nominal alpha values

~ were not significantly disturbed by errors in the covariate as would be

expected (Kenny, 1975;=Oyerall & Woodward, 1976a, b)} However, if ther
4 ' . ' .
was a pretest-treatment correlation, then the nominal alpha values were

. greatly affected. In general, the fallibility of the covariate resulted in

an underadjustment of posttests differences so that the empirical alphas
exceeded the nominal alphas. With reliabilities in the -5 range, Type I
,errors were made im 40% to 100Z of the samples depending upon whether the n
per group was 10 or 100-' For all'conditione empirical-power differed

sig cantly from true sower. Sometimes the empirical ppwer was \
significantly lowenuand somefimes it was significantly greater than'the;
theoretical value. According‘to McLean et. al. (1975)'"the most dramatic
result'(yas) that where the ekperimental group actually‘experienced a gain
and the control group did not and the pretest mean of the experimental
group was‘less than that of the control group, the adjusted posttest means
indicated that the control group was better” {(p. 550).

After conducting extensive simulations in which reliabilities,

pre-posttest correlations, covariate-treatment correlations, and treatment

effects were varied systematicall%%?hrough a wide range of »alues,

Corder—-Bolz (1978) concluded "that the models traditionally used to

<
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evaluate change [including ANCOVA} can produce seriously ‘distorted results" -

(p. 975) Porter (1967) also conducted extensive simulations. His work L

< *
fndicated that the blas in ANCOVA estimntJ%s and significance test could be e
very large. In contrast to these findings which accord closely with the T
derivations presented above, Marston and. Borich (1977) reported that in - -

'tﬁeir Monte Carlo investigation of ANCOVA with an unreliable covariate, the B “"_'l
tests of adjusted group differences did not exceed the nominal aiph: level, o . w
even when the pretest means differed. /lt 1s difficult to explain this . _ .
anomalous result assuming that their data éEneration procedure performed as?L ’ )
they expected. ﬁsing a complete, over-identified, nondyna ¢ two—equation
model Ladd (1956) generated 30 samples of observations on"gio endoge eous
and two exogeneous variables. The refiabilities of the variables ranged
from .74 to .92, When'the twohregreesion equations were estimated

separately by OLS in 'the 30 samples Ladd ‘found that the average b'j

sometimes was greater than and sometimeg smaller than their respective '
~ .\

structural parameter values. The average least squages bias ranged from O

to 31% for the eight regression coefficients across the 30 samplgi.

S

To summarize the results of the Monte Carlo demonstrations, in four of

\
.

five in%estigations, the findings of the simulated datahwere congruent with
. \

the proofs and derivations presented in the previous gections. Thus, the

evidence is quite substantial that if the observations are dactually _ N

a

generated;by a mechanism modeled by Equations 1=f (or 7-9), OLS regression

o

estimates derived frou observed scores will lead to errors of inference LS

because of the errors of Teasurement. ’

Before concluding this ¢ ction it 1s instructive to note that several

-

ritgrslﬁﬁve”illustrated the possible bia§ due to the "errors in variables” ‘

R
in terms of zero-order and partial correlations. Since these correlations

.‘ ! ‘ m




can be written as functions of the bj’ the same bias will be observed in
the r' as in'the.b'J. Consglder the one predictor case whére‘the

zero—-order correlation between true pretest and true posttest can be’ written

le

yry % obL —— (38)
. 8y )
and the ¢orresponding estimatot based'on»falliblé data is' '
" . -, \ " le . ) . .
- - ) ‘ Fyxl - Vb 1 8 A (39)
y

- ‘ 'Sinceib'l 15 less tpan b1, r'yx; will be less than ryx, except for sampling

error. Bohrnstedt and Carter (1971) have constructed extensive table
illustrating the possiblé‘fattenuating" effects of measurement error on

0 N - . .
TYX,* Psychological regeafchers have been cognizant of these kinds of

problems since Spearman's (1904) classic paper.
8 The case for the coefficient of partial correlation is directly

analogous to that for the-partial regression weight. Following DuBois

-
- @ ‘ -~

(1957,&137, Eq. 80) we write
8 - b'x X ‘BN . N

yX1 " ¥1x2 X2 : (40)
/ 1= Blyxy sxyxy / 1= Blyx; Syxp

Clearly, the observed partial correlation will be subject to the same

r'yxy. x3. =

distortions as are sye partial regression weights. Cohen and Coﬁen_

(1975) have’ furzished several examples, which are reproduced in Table 2,
bf kinds of bias in partial correlations that can result from errors of

meéasurement in the partialled variable.

& [ Insert Table 2 ‘about here




In al} of Cohen and Cohen's examples the reliability of the pretest
(the parq&alled variable) is .7 and the posttest and research factor
reliabilities are 1.0."' The partial correlations may_beginterpreted as
the cnrrelation of the research factor with change. In the first example
the observed worrelation of the research variable with change is .OO

while the true or structtural coefficient.equals -.23. In other examples

the observed ryx2_xl underestimates and overestimates, and in some it even

"has a different sign than foZ_xl. Regardless of the perspective taken

the same conclusion seems to obtain: errors in variables will bilas
statistics basee on observed scores as estimators of the underlying
structural model and are likely to lead to erroneous statements about the
determinants of change. Additional demonstrations of the effects of
measurement error have been offered by Brewer, Campbell & Crano (1970),
Campbell & Boruch (1975), Campbell & Erlebacher (1970), Evans & Anastasio

(1968), Hnmmel-Rossi & Weinggig (1975), Kahneman (1965), Linn & Werts

_ (1973), and Lord (1963).

REGRESSION VERSUS STRUCTURAL COEFFICIENTS

. . 4 : .
We pause bripffg in our review of the effects of measurements error
‘ ,

" in studies of change to reconsider the question of formulating a

structural model. An applied orientation which has a long ‘tradition in

psychology and education disagrees with the importance accorded the

structural model by this reviewer (cf. Draper & Smith, 19663, Graybill

1961 Lumsden, 1976 Marston & Borich,~ £1977)« The position of this

applied tradition is‘that the variables of interest are the observed

] -

scores (errors includeﬁ) because decisions, predictions and evaluations
N .




, . | >
are based on observed rather than true ‘scores. When decisions are based

on observed scores, there is little doubt about the validity of this
position. ‘ ’ '

-

It should be recognized, however, that with respect to

'decision-making_the true score has been redefined as identical to the

observed-score. Random fluCtuations in scores are no- longer regarded as

i

error but are treated as part of the»inherent variability of the -
‘predictor. Thus, if one is trYing to predict the observed final status

or gain or one is attempting to model economic decisions where judgments
of producers and consumes are based on observed vaYues (Johnson, 1972),

then the OLS regression estimators are unbiased and consistent for the

parameters of interest. This last statement is subject to omne

qualification: 1if the structural model accurately reflects the causal

mechanism and a group-of‘individuals are selected for study by some

nonrandom process independent of the pretest, then the structural

) coefficients will provide the optimal estimates (Warren, White, & Fullef,
o , v 4
1974). In this Context inferences from regression analysis of the

-t ‘ .
d

observed data must be 1imited to randomly drawn samples. However, it has
also been demonstrated that if selection into the treatment groups in an
ANCOVA design is made explicitly on the basis of .the pretest scores, then

the observed-score ANCOVA estimates are unbfased for the gtructural '

'parametes (Goldberger; 1575; Kenny, 1975; Overall & Woodward, 1976a;

" Rubin, 1977; Weisberg, 1979). This usuallf means conditional

randomization where the probabiiity'of assignment to a group for each

value of the pretest is explicitly determined by. the experimenter. When

[

the treatment groups pretest distributions do no overlap, we have the

’ .
y , . .
»




. b
regreseionédisc:ntinuity design which has been advocated by Campbell

S

(1969).

o~

In almost all social science research, particularly &tudies of

change, the structural conception is the more appropriate. The

structural model~represente the cauaal_etructure or theory of the data.

o _Reaearch concerned with theory and hypotheeis teeting should be ST,

N

conceptualized in terms-of the underlying dynamics of the behavioral ; . »

” -

processes under coneideration- Hanuahek and Jackson (1977) are
particularly~lucid on this issue: "Structural equations . . . repreeent

the way in which we believe the observed data were generated, i.e., the )

;underlying behavioral and stochastic procesees that {ed to the observed
~ data. The gtructural representation corresponds to the theoretical

models underiying the analyais and relates to the formulation of _the

a

model where a priori information about specification‘or coefficient
values is relevant.” (Hanushek & Jackson, 1977, pp. 227-228).
Furthermore,tif oné is, intereeted'in testing competing theories, then the .

P

structural models should be eetimated since the theoretical models apply »
R

In another senee the etructural coefficients may be taken as more ) -

‘to latent or true var{atea and not the obeerved values.

. 7

basic or fundamental than\thoee derived from the observed—-score

distributions (Goldberger, 1973; Hanushek & Jackson, 1977). The
parameters of the distributions of the observed scores can be expressed

as functions of the gtructural parametere, for example, Equation 34. A

[N

} : change in the value of one structural coefficient can‘change the values

- ’ . -
;‘e of sevefal or all of the observed-score coefficients. Thus, if we record
changes in ‘the observed~scorg estimators as different samples are drawn

- ¢

(e.g., males and females or 1965 and 1975) we have little uay of

-~




ascertaining the comﬁonent(s) of the theory on which they differ. The

implications of these facts are clear: most béﬁ vioral research,
particularly that called "basic" research, should be conceptualized -and
. S S

analyzed in terms of structural model .5 We now take up some issues

- related to the estimation of strucfural parameters.

IDENTIFICATION REQUiREMEﬁTS'
Identificatidn of a statistiéal model refers to the capability of
uniquely determining tﬁe value of .each hypothesized componeﬂt"n the
model. For linear statistical models all of the informa;igp/bontained in
tﬂé observations wﬁich 18 available for the estimation of parameters is

‘contained £n the variance-covariancesmatrix S . The number of

parameters which can be identified is equal to the number of unique e

“elements'in'§yx' , which is equél to p(p + 1)/2 where p'is the total

number of vaﬁgaﬁlés represented in the matrix. Let us {
considered previously where there are fallible pfﬁt&st,and ponttest
: !

scores related as in Equation 7-9. The covariance matrii of the

Pl

observable vector (y; xl) in,térms of pafameters rather than sample -
statistics is ° % o
b12 lez + ey + 8.2 by lez
S - . . (41)
=* 2 2 2
by sx; 8%1° ¥+ 8y
g, 3

There are three observable quantities, syz, sxiz, Syx]» which can be used -

to uniquely identify the parameters sglz. se)z and b'lall(For'present purposes

ve ignore the facﬁ that information about the observed means can.be used '

to identify b'o as in Equation 14.) However, the structuraL_equations

11 - 24 , | o




are ‘defined in terms'of five parameters. Since there are only three

"

variances and covariamces, the model‘cannot:be_identified without two

independent rest;icti%ns. If: the measurement error ‘variances

v

(sulz,'suz2 and sy2) or the reliabilities (ryy and rll)iarf known a

priori, then the~coefficients can e restricted to these values leaving
-tﬁé tﬁreefdﬁkntwﬁ pgrameters estimable fromlthe_pbsgrvgd variances and
covariances. ' | ' |

It is easily proved that when there is only a single measure-of eact
latent variable_gnd.no information #bout reliabilities available that the
structural &odél is underidentified and a priori restrictions must be
imposed in order to make the parémeters estimable (Johnston, 1972;
". Kentall QSStuart, 1961; Mandansky, 1959;‘Werts, Linn & Jﬁreskpg, 1973;
Wiley, 1973). This is also iliustrated by the two-predictor case

described in an earlier section. 'Tﬁe structurgl model given by~Equations
3, 4, 6 and 22 contains eight parameters (sxlz; sXZZ, sulz, suzz’ svz, sez,

bl and bZ) whilgithere are only 3(3+1)/2 = 6‘observed variances and

covariances which can be used to identify the model. Without a priori
; | | < , ‘
informatiod about the error variances (or some function of them, e.g.,

the reliabilities) or restrictions on the model (e.g., 53 = 0), the

e 7 ‘

model is underidentified and cannot be estimated from sample data.
In general, there are three metho%; by which the information

necessary for identification may be prévided: (1) actual values or

testiﬁhtes of the structural parameters maj be determined from previous

investigations, (2) the theory may restrict some of the parameters to be

zero or Eb equal other parameters (e.g., 3u12 - suzz),\\i\(3) multiple




asures or indicatofs of the laFeét variables or true écoreﬁ-may be
collected (Jdreskog, 1973; Wiley, 1973). This finil alterna;ive may be
Fhought of as imposing a'facfor structure en the observationg and, as a
method, has éxcited much promising new reséarch in psychometrics,

soéiofbgy and econometrics (see"Aigher & Goldberger, 1977- Goldberger &

Duncan,’1973): However, in this report our exclusive concern.will be

ﬂwith the first and second methods for 1dentifying structural models with

‘J .
fallible variables. ~
‘ - LINEARITY CONDITIONS <
ed,

Even when he model can be identified by the methods Just desc

résearch on the causes of change with fallible variables faces an

; additional problem pefore estimation can proceed. That is, rationalizing

v

or testing the asshmption that the relationship of the observed dependent

-

variable to the 0bserved€éndependent variables remains linear when the
underlying structural relation is linear (Cochran, 1968, j1972; Kendall &

Stuart, 1961; Lindley, 1947). Here linear meansvlinear‘in the Xj

(straight,ling) fath#%_fhan_linear in the bj' If the structural

relation is exactly linear of the form ,

\

LY =By + byX; + byX, + e o (42)

and the XJ and e.are independently distributed with E(YA Xj) = 0, does it

follow that Y=blg+b'ix) +blaxgte , ,.ﬁ":
with E(y 'xi) = 0, is also exéctly linear? "The answer is, in general, no;
&‘&

only under certain quite stringent conditions will linearity be
!’ )
unimpaired” (Kendall & Stuart, 1961, p. 413).
Lindley (1947) has determined the 'necessary and sufficient conditions

or the relation to remain linear in the narrow sense, i1.e., where x and

~




Y . ‘~ . -

e' are not independently distributed, If wé ageumé'tﬁet the model

specified by Equations 7-9 holds with the assumption that the errors are

]
mutually and serially uncorrelated, then

y. = zjb'_’]xj » _ ’ . (43)

s

iff

: _ g QY x5 P . Y uy - ,
T 5y = by aa tj{i = Zpy 21 Y : (44)

where the Vs are Fisher's cumulant generating functions - c.g.f.s. -
(logarithms of the characteristlc functions) of their suffix variables

(Cochran, 1968, p. 650, Eq. 8.3; Kendall & Stuar:, 1961, p. 417, Ex.
, .
29.12; Lindley 1947). Thus, when the c.f.g.s. of the Xj are multiples -

of the c.g.f.s. of the u the relation will continue to be linear.

j 0
Cochran (1972) oPserves that "roughly speaking, this implies that Uy

andpkj belong_tohthe same class of distributions. Thus if XJ is

distributed as Fx.zs ,\so is u o« 1f x.1 is normel, uj

j ’ L] L]
muct be normal"” (p. 527) ‘ N
\

Additional conditions are necessary if we require the xj to be

. . \ .
distributed independently of the residual from regression(e'), that is,

to maintain linearity in the fuller sense. Fix (1949) proved that for

'

the case of bivariateiregregsion if the X, u, v and e have finite meahs <
and if the variance of either the X or u exists, then both X and u must

be norﬁally dietribpteq in order for the observed regression to remain

exactly Iinear. R : . P

|
|

In actual data how frequently can we expect Lindley s dnd Fix 8
conditions to hold? Cocﬁran (197f) argues that “the forces which
decermine the nature,ﬁf tke dietribution of u. . , are quite different

e

from those that determine the nature of the distribution of the correct




»

[true] X. Consequently, my opinion is that in such applications even the
; Lindley conditions will not be satisfied ‘except perhaps by . fluke or as

an approximation « o o " (pe 528). He investigated the ,nature of the

departure from linearity in simple“bivariate cases where Lindley 8
conditions did not hold. His results spggest that in. many situations the
.linear component of the observed-score regression dominates the

curvilinear components, even with a relatively unreliable x These

1.
o . .
findings provide ‘some  support for allowing "the ordinary theory to be

LY

used as an.approximation" (Kendall, 1951, p. 24). However, Cochran was
unable to obtain any general results that are exact in the bivariate
case, and the nature of the departures fromilinearity in the multiple‘
predictor case when Lindigy'sAor Fix's conditions are not satisfied has

2 , Ph
not been investigated at all. o Y T .

‘ SUMMARY
This concludes our initial mathematical analysis of 'the probf@ms
caused by errors of measurement in investi@sting change with linear
models- A general structural model for analyzing change has been -ﬁ
presented. The theoretical piﬁs‘and inconsistency in the observed~score

-

‘regression coefficients was proned, and.the harmful effects of

\
¢

measurement ‘error gn estimates of the squared multiple correlation, mean
square error, and standardiZed regression weights.were explicated. We
described several demonstrations of how large the blas and how incorrect
the resulting inferences potentially could be. The interpretation and

uses of the structural coefficients were contrasted with those of the

regression coefficients. We fh&roduced the concept of identifiability
|

t'was essential to determining the estimatibility of the

- and showed how 1




RET

structural parameterﬁ. Finaliy, the know; conditions for the linearity
*  of the observed-score relation when Ehé‘structural relation is linear

were délinéated. |
. Statistical developments from econometrics, gpéiology, e&uéation,
v ’1'1 * psychology, biomegrics, and mathematical statistics were synthesized in

this éhap;er.' Thié is the first compréhensive (yet, hopefully,
. ~-compfeﬁénfible) analysis of the problems cdused by mea;gggment errcr in

linear models for analyzing growth that has been made ggzllable to R
educationql researchers. Its purpose ié to alert investigators of the

harmful effects of measurément error and to furnish a detailed exposition
of all the major 1ssues. If the objective 1is realized, future
longitudinal studies will be designed with greater care and interpreted

+ with greater caution.

v 4




FOOTNOTES . ' L

.

v 1 In this proposal we 'treat only single equation estimation
techniques, 8o the structural coefficients for the paths between X3 and
X; and between X; and X3 are not considered. See Hanushek and

Jackson (1977) or Wiley and Harischfeger (1973) for multiequation
estimation.techniques for the genera path model.

é The superscript t will be used to designate vector and matrix
transposition. . ‘

3 It 1s also easy to show that b'p is‘;'biased and inconsistent : }

. estimator of bp. After by has pseen determined, bp may be found : ,w

using the formula (Cochran, 1968, p. 651): C |

. \

|

\

1 J
: -3 -1

4 1t ghould be obvicus that these statements hold quite generally
and not only with respect.to studies of change. Indeed, the problems of ;
measuremedt error considered in this report afflict all statistical , :
models, not just those for anlyzing change. The issue with regard to : .
test-refest data assumes greater theoretical and methodological import
because' of the conceptua} status of the partialled variate, i.e., change.

~
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- Table 1

S~

. A ST .
Values of B'; and b'p when by = 2.0 and by = 1.0°

-rxlxz = "'0.3 ] rxlxz = 70.3
1'22 1'11 .= , .6 .8 7 1.0 . .6 .8 106 o
" :
by 1,25. 1,68 2.13 . 1.10  1.48 _ 1.87
.6 . . |
. B, 74 .66, .58 .44 .51 .58
. _ |
b'y 1.20  1.63 2,06 1.13  1.52 1,94
] .8 .
y %1, 99 .89 .78 59 .69 .78
b1 1.15  1.57 2,00 1.15  1.57 2.00
1.0 N :
b's 1.25  1.13 1.00 L5 .87 1.00
i yid
? \
aAdépted from Cochran (1968, p. 657), Table 11.1.
- ° k -
/ Cd
. ) \
\ 1
\\
.
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& Table 2

Effects of the fallibility of a Partialléd Variab,lea

! .

Example ryxz ryxl rx1x2 Fll r v X1 TYXs- Xy
1 .3 ] .6 Y A .00 -.23 -
2 /- . .5 .7 > : .7 .24 .00
3 N .7 .6 .7 1 -.26

7 i

4 > .3 .8 .7 .45 .57
5 .S 3 . .6 .7 42 $37

aRep.roduced from Cohen and Cohen, 1975, p. 371, Tfable 9.5.1.

\ .
Note.~--For, all examp}es, Tyy = Typ = 1.0.

-
~——




General Strucﬁural Model for Studjing Changea

—
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*Figure 2

Chénge. including Errors of Measurement

u

Figure 3

Typical Regression Model for Studying Change
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of change. In the first section we wili consider the_original

gHAETER II1 , P

REVIEW OF METHODS THAT CORRECT FOR ERRORS OF MEASUREMENT

INTRODUCTION

In :Le previous chapﬁer we established the impértance ofbstructural
models fof explaining change, proved the bias of OLS regressioﬁ of
observed scofes;for'estimatiﬁg'the parameters of the true score
distributions, demonmstrated the potential deleterious effects of
meagu;gpent erfor on inferences concerning Ehe detgrminants of dhagge,
aﬁa considered the requirements for identificatior.and linearity. Now a
varieﬁy of singie-equation statistical ‘methods that.haVe been devised to
estimate the st:uctufél equations can be reviewed. Expiication of
multiple~equation models and multipie-indiéator structural eqﬁation ‘
models (e.g., Duncan & Goldberger, 1973;‘Aigner)& Goldberger,‘1276,
Sorbom, 1978) lie beyond the scope of this report. (However, see Chapter
IV.) 1in this chapter‘our'attention will focus gxclusively on techniques
which utilize a‘priori information “about the errors of measurePent in the

estimation process. The objective is to draw together techniques from

- diverse sources, to express them in a common algebra that is synchronous

with the eéuationé of the preceding chapter, and to analytically evaluate

—

them in terms of statistical criteria, such as bias, power, and

P

robustness. The derivations and analytic results should prove of value

to ~ducational researchers who wish to estimate the structural parameters
_ _ )

x.

By

attenuation corrections of Spearman and then in succeeding sections four

multiple regression methods tﬁat are suitable for the study of true

change. ' . .

v
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SPEARMAN'S CORRECTION FOR ATTENUATION

Although statisticians have been aware'of the<blas in OLS regression

caused by errors of ‘measurement: for a long time (see Adcock, 1878;

Kummell, 1879; Pearson, 1901), Spearman (1904) was probably the first to
derive an expression for the bias and propose‘a method for correcting the

o
OLS estimators for attenuation due to errors in variables. Without

‘présenting a proof, Spearman (1904, p. 90) suggested that a zero—order

N

corrélation could bte éorrected for the attenuation caused by errors of
y . A . .
measurement by dividing the observed correlation by the product of the

-

square roots of the reliabilities:

- ' Tyx . (1)

¢ B
In psychological research the investigator is usually interested in
the association between two constructs or latent variables and nét the

attenuated correlation between observables. Thus, it isvfreﬁuenply
recomnended that correlations be corrected for attenuation (e.g., Block,

1963). One difEIEGIEy‘QIEH‘Speafmanighpggggggfé, however, resides in the

fact that a cdrrected correlation may exceed 1.0, which has givemthe - - - .-

technique a skeptical audience (A.P.A., 1966) Such amr outcome may
result from sampling error in the correlation or in the reliabilities.
However, Bock & Petersen (1975) have developed a restricted maximum
likelihood estimator of the attenuation-corrected correlation which

cannot be greater thanm 1l.0. An additiohal,problem has been thé lack of

. - /
an exact formula for the standard error of a dorrected correlation and

. .

procedures for hypothesis testing. Approximate formulas have been
offered by Shen (1924), Cureton (1936), Kelley (1947), and Forsyth and

Feldt (19€9).

III - 2 E;“'




'

Kelley's (1947) formula to provide estimates of ‘the standard error and .to .

test hypotheses‘baéed on normal distribution Ehgo?y{ AEcording to tﬁe
results of Mcnte ¥Carlo studies, their\methéd gives réasonably good
control of Type I error as indicated by the correspndence of empirical .
'agd nominal alpha levels. In addition,.tﬁe procedure workéd very

‘a@equatelyffor establishing 90 and 95.per cent coﬁfidence intervals for

r&x. Thus, it would appear tha£ for questions cbncerniné the relative

stability of individual differences in an attribute, Forsyth and Feldt's 1
(1969) method can be recommended. T

If one wishes, however, to test the hypothesis of no change or

perfect stability in individual differences in a trait that is unréliably

measure&, then a different hypothesis testing strategy should be
'pursued-l In a comparison of their normal curyé procedure with a
moQ}ficagion of McNemar's (1958) test of the hypothesis that the v o .
popﬁlation correlation corrected for attenuation equals l-Ot'For;yth and
Fgldt (1970) found that the Forsyth~Feldt modification of McNemar's fest
produced empirical alpha values closer to nomiﬁal»values ip a series of
s;ﬁulated experiments (see Chapter IV).' In the meanwhile Jbreskog (1971,
1974) has devised a maximum likelihood test that not only evaluates

'Ho Pryx 1.6 but_e&aluatés the assumptihos upon which the McNemar
(1958) and Lord (1957) tests are based. However, Jsreskog's cOﬁériancq
s;ructure aﬁalysis requires multiple measures of time 1 and time 2
status. The conditions undeg‘;hich either tﬁe Forsyth~Feldt~McNemar
(1970) test of J¥reskeg's procé&ure ié relatively guperior have not been

i, . ’

. III -~ 3




determined. Clearly, both of these procedures have useful roles to play

in the study of change- When only single pre~ and post-measurements.and

‘fegtimangangf;ghe reliabilities are available, the Forsyth~Feldt-MeNemar

test should bg used. These procedures are developed more extemsively in

the next chapter.

' When there are peasgrements availabie oﬁ.treatment or background
factors And interest ééncers on the effects oé these variables on change,
an index of effect which has been often recommended is the partial
correlation (cf. Bereiter, 1963; Coh¢n & Cohen, 1975; Lord, 1963). The
partial of interest is the correlation between final status and the
determinant of change with the pretest partialled out. As. noted above,
this may be interpreted as ;he correlation betweén,change and the
. treatment or’ background factor. But if it is computed from f#llible
observations, erroneous inferences ma§ resﬁlt. To overcome this problem,

v

Spea;man's bivariate correction for attenuation has been generalized to

gartfal and semipartial correlation;.

The formulas for a partial correlation corrected for attenuaticn were
first presented by Stouffer (1936a, b)fand have since been independently
dér;yed or discussed by Bereite; (1963), Bohrnstedt (1969), Bohrnstedt
and Carter (1971), Cohen and Cohe; (1975), Dunivant (1975), Hotelling
(1933), Hummel-Rossi and Weinberg (1975), Kahneman (1965), Lord (1958,
1963, 1974), Meredith (1964), Mulaik (1971),‘6'Connor 21972), Saunders

(195 and Tucker, Damarin, and Messick (1967). To derive the formula

for the estimator of the fully corrected partial correlation, one simply

’

substitutes into the formula for the true partial correlation




. . TYRy T TYX; TXyX,

T¥Xp. X3 S =
| Ja-xd) Q- X%,2) .

tgg three estimators frem Spearman

- . - Tyxg - . Tyxp - . x1x2
IYX; * o s IYX —_— » TX3Xp "

v/ (ryy) (r11) V' (ryy) (r22)

Simplifying the expression, the final result may.be written

K]
-

Tyxo T11 7 Tyxy Txyxy

TYXp. X, = ?

v//(ryy rjy - ryxlz) (r22r11 - rxlxzz)

The formulas for incompletely corrected partial and semipartial 'ﬁ
cofrelations;'i.e., correCtedvfor unreliability in only one or two of the
variables, are given in Dunivant (1975).

Although social researchers ﬁave-been urged to u;e these corrected
rather than the observed-score partiad8} they haveé not been givéﬁ the
means Eo place exact confidence liﬁits;on or to test hypotheses about the
corrected coefficients. Lord (1974, 1975) used lérge sample procedures
to develop the sampling theory .of corrected partials. He succeeded in
deriving an abymptptically‘efficient estimator of the
corrected~for-attenuation pértial correlation (which is essentially
identical to the'ome arrived by the substitution procedure outlined 1n

n "\

the preceding paragraph).  Fur _ermo}e, Lord (1975; Stocking & Lord,

¢

1974)'prbvides an asymptotic test igr the estimator utilizing a numerical
. N\

differentiation computer program. Ndting that the estimator could become

infinit? because of sampling fluctuations in the zero-order correl&tions

of reliabilities, he suggests the corrected estimator "may show very

-
» -

Vv (r11) (r22)
AN

2)

(3)

(4)




large sampling fluctuations if the’ébﬁple is too small, especlally if
either Y or X2 is highly correlated with the true score Xl. The

sampling fluctuations (of the estimaﬁor) will in certaln cases be so

.

large as to make the calcuiation’of o almost useless " (Lofd,
. YXZ'xl
1974, p. 215). '

While the observed-score partiai,may lead to faulty inferences about
trge.change, it seems thaﬁ:the corrected-for—attgnuation partial may
prove little better. Howeyver, in situations where the corrected
coe%ficient is/finite and the standard error of the correéted partig; is
got very large as computed by the AUTEST program (Stocking & Lord, 1974),
infgrences should be drawn on the basis of the co;rectéd partial. It is
clear from Lord's (1974) warnings that investigators would be ve}y unwise
to compute partial correlations corrected for attenuation an& fail to

estimate their sampling variation. Thfé problem of determining the

sampling distributions of the estimators corrected- for errors of

EN

measurement will reappear often as the other methods are discussed.

a

" STOUFFER-LINDLEY METHOD
"The first general procedure .for correcting for errors of measurement
in the multiple regression case was proposed by Stouffer (1936a, b) and

developed more formally by Lindley (1947), who proved several theroems on

-the technique. Stouffer and Lindley have been followed by many others

-

who have discovered the corréction'independently or who have explained
: . o [y
the method, including Bohrnstedt (1969), Bohrnstedt and Carter (1971),

Cochran (1968, 1970, 197), Cohen and Cohen (1975), Cronmbach and Furby
’l ' . N .
(1970), CTronbach, Rogosa, Floden and Price (1977), DuBoils (1957),

v




DeGracie (1968), DeGracie and Fuller (1972), Fuller (1975), Harnqvist
(1958), Hummel-Rossi and Weinberg (1975), Johnson (1963, 1972),3Kenda11
and Stuart (1961), Knopmans (1977), Meredith (1964), Theil (1965 1971),

Werts and Linn (1970) Wiley and Harnischfeger (1972), and Wiley and .

Hornik (1973). In our presentation of the method, we will follow Johnson ¢
(1963,\p. 163£f) closely. , ‘ )

Consideér the two-predictor modelé presented in Equations 3, 4, 6 and

-~

22 of Chapter II wherr X, is the pretest and X, is some determinant

2

of change. The following assumptlions are made :

E(u1) = E(up) - E(v) =0 | (5) :
E(ui?) = 8y;2  E(up?) = suz.2 'E(v’2) - sy? . a 6)
up~ NID(O, 3012% up ~ NID(O,'suzz) v NNID(O,ISVZ) e~NID(0,s52) (7)
E(uje) = E(uze) = E(ve) = 0 : ICB)
E(ujup) ™ Suju, E(ujv) = Suv E(uzv)‘f Buyv (9)

We recall from Chapter II that 4

sxléﬂ 5X12 + sul2 (11
sx22= szé + suz2 ) (12)"

’ and note the following -identities from regression theory
Sx1xp = lexz * Buju,y | B (13)

' 8yx; * blsxl2 f 525x132 * Sy;v , - (14) M .,

and

'Syxz - blsxlx2+ b28x22‘+ Suyv . . (15)

lE(ulxl) = E(U1X2) = E(ulY) = E(uzXz) = E(qu) = E(Vxl) = E(QXz) a E(vY) = 0 ‘«{O)




&f we assume that X, and Xz have a bivariate normal distribution,

} ,

then Y, Xl and Xz a:é m&itinormally distributed. Maximum likelihood

estimators of the population variances and covariances are given on the

left sides of Equations 11, 12, 13, 14 and 15. Now if the populétion
ﬁeasutement_ettot variances and covariances are known a priori, then
Equations 11 and 12 can be substituted 1nto‘13, 14 aﬁd 15. This results

in the following system of simultaneous equﬁ?&ons for bl‘and b2

S

® lee 2 =g 2y 4 Bol; - - N :
bl(le Sul ) + bZ(SXI}P{g\ Suluz) (Syxl ) Svul) (16)
bl(5x1x2 - su]_uz) +ﬁ(sx22 - suzz) = (Syxz = Svuz) . o (17)

Solution of these two normal equations produces estimators for the
, \ .

structural coefficients for the effects of Xl anﬂ/&z on true change
. 0 .
which are identical in form to those given by Werts and Linn‘(1970). (To

establish the correspondence, assume that the error covariances equal

'

zero and use the identity: ‘

o {
i ssz - sul2 - tjjsz x5 )

]
(S X)

The reader will also note that the present formulation 1s less

‘restrictive than Johnston's since it allows correlated errors of

R4

. S, .
meagurement. In actual practice, however, the extent of such

correlations will be determined i;frequentlf and typically will be
assuped ‘to be zero. The main point is that the p;ésent formulation is
gedZTal enqugh to bandlé such a situation. Insetﬁing sample‘y and xj
variances and covatfgnces and known population error variances ag%

covariances in Equations 16.and 17 and solving yields maximum likelihood

estimates of b1 and b2' The intercept constant and.residual variance

from regression are found in the usual ways. Thus, no great estimation




pEoblems are encountered as long as the observations are based on sample !

A T

, . 4 .
/ sizes of apgfﬁximately 70 or more (cf. Stroud, 1969). This will

virtually insure thqt'the sampling errors of the observed variances do
‘94

T Ry B . .
not cause negative true score varlance estimates.

° We now present the matrix formulation for the general case. Without

’

writing down the exprefﬁions,ﬂwe agsume that the assumptions'in Equations

5-10‘are generalized to the multivariate case. Then in matrix notation

Sax B =5y : (18)
) / :S_XX'.s_mc"_S_uu»‘ : ’ | | ‘ (19) .
and .
| ) BYX "5 yx - Svu S @)
1~i> . Substiguting the r}gpttsiQes of the last t&o formulas for,;he
corresponding'quantities'iﬁ the first equation yieids
_ S SubrGm-sw) - (21)
. " Then 'the solution to the so-called normal equatigns is . 0 )
. <
: B e R e L (22)

| b
Assuming that the matrix inverse exists, the method will yield a

p .

unique estimate of the'veptor of structural coefficlents. Of course, b

t

. i8 a least squares estimator of E_undér the stated assumptfons. Lindley
(1947), Kendall and Stuart (1961) and Cochran (1968, 1970.) p;eseﬁt these O

results in g slightly]different way. According to their formulation the

estimate of the structural coefficients is expressed as a weighted .

¢

function of observed (biased) regression weight vector, the error

>

. variances and the predictor covariances. Since S~

1
4

h \
.}\ | . \T_




(23).

. (@)

(25)
b= (Six-Su)tSaxd o 26)
It should be apparent that the procedureﬁ outlined by’Cronbach}and
Furby (1970) for correcting the observed variance-cofi%¥iance matrix lead

i

to the same sdlntion as.iohnston's since ssz - sujz = rjjsxj7' If the

covariance matrix is standardized, i.e, transformed to a correlation- N

N\

matrix, then rjjssz' (rjj)(l) = rjj become the diagonal elements which is

\
. _
’ Stouffer's (1936a, b) method. If Stouffer's corrected matrix/ (a . ’ s

correlation matrix with reliabilities on the diagonal) is standardized .t g
(1.e., transformed into a correlation\patrix with unities gn the

/
principal diagonal), then we have a correlation matrix co%rected for!

8

attentuation by the Spearman‘fornula given as Equation 1/ Meredith
“ ’ i
(1964) described the application of multivariate statistical techniques,

8+8+, canonical corJeLation, to the attenuation-corrected correlation

matrix. This method produces- standardized partial regreision

coefficignts which can _be rescaled’in the metric of the true scores as

)

Cohen and Cohen (1975) describe. It should be apparent that if we

v - . . .

calculate partial correlations from any of the QQ::ecLethifr;;es
described in this section, the coefficients will equal those lculated




r

| ’ L4 ,
by the Speargan-based formulas given in the preceding section. This

identity éuggests that there may be problems in specifying the sampling

theory for the estimators of the structural parameters computed from the
. : o Ce
observed covariance matrix corrected for errors of measurement.

There are at least three potential problems when one wishes to

establish confidence limits and test hypotheses Yabout the structural
\ : '
coefficients. First, sampling error ih the observed variances and ’

covariances may produce a corrected matrix which 1s nonGrammian and

therefore not admissable as a covariance m&trix (Bock & Petersen, 1975; K

n

Fuller & Hidiroglou, 1977; Williams, 1959). Second, the population error
variances or reliabilities will be estimated from prior-studies rather
than being known. Sampling errors in the error variances can have the

same damaging effect as sampling errors in the observed variances and

covariances. Furthermore, thislgontributes another source of variability
[‘.

e []

‘to the estimated regression coefficients 'which is not represented in the

formulas for the standard errors of the bj' Thus, confidence intervals

aﬂd hypothesis tests will be approximte at best (Cohen & Cohen, 1975;

Fuller, 1977; Warren, White, & Fuller, 1974). The third problem which (
may be encoun;ered is the exacerbation’bf the first twg_problems by
multicollinearity in the data, specification error in the model; etc. !
Although some have recommended the use of the standard formulas for I
calculatigg F-.and t-ratios and standard érrors (e.g., Cohen & Cohen,‘ ’

1975), these potential problems should give the researcher a skeptical
attitud% Qheﬁ interpreting such stétisticé."lt may be noteﬁ that 1if an

expression for the standard errdr could be written which included

information about the sampling error of ‘the error variance or




an asymptotic test. ,

. /' . > '
reliability, Stocking and.Lord's AUTEST program could be used to provide

S
ot

A Before concluding this éection we .consider the issue of analyzing the

effects of treatment er‘background groups on change via the
R e .

Sﬁouffer-Lindley method. As in a regular dﬁltiple regression analysis,

information about group effects may be represented in a variety of ways

by means Qf dummy-coded vectors. Analysis of covg;iance/can be handled

in this way as described earlier on; but what are consequences g£dw,,f~~'“"”'

e

—

s * - ° " o
including dummy-coded variables in the corrected covariance matrix? Four

-

‘questions arise when we try to evaluate the effects of treatment or

’
A

. p .
background group characteristics on change by means of dummy-coded
variablese. First,’what is the consequence of violating the assumption of
multfvariate norﬁality which will result from the inclusion of dummy

variables? ,Secohd, can the procedure of testing for heterogeneity of

regression slopes/by means of product vectors be extended to'this\&f
N Y

attenuation-correction method? Third, what are the effects of

I3

. heterpogenous error variances or reliabilities between(ﬁxoups on the

-corrected estimators? And, finally how.can error of measurement

. ' = !
(classification) in the group factors be incorporated into the analysis?

Particularly in field or quasi-experimental studies, errors of this kind i
may be present, e.ge, facial or ethnic group membership, SES status, or
culturally disadvantaged. Another way of stating this problem is that

a

the selection rule for assigning individuals to groups may not be exactly
known. Recent progress on this problem has been made by Aigner (1973),
Cronbach et al..(1977), Games (1975), Mouchart (1972, 1977), and Murray

(1971). To conclude this section we remark that even though the

\




Stouffer-Lindley method has been around for quite some time, there is
still a great deal to learm about its perfdrmance in practical ‘

applications. : | , ¢

STROUD"S METHOD ~ )

Stroud (-1'968° 1972, 1974) has developedlan asymptotic chi4square test
of the hypothesis of equality of condit¢§nal-means aﬂh variances of true
scores for two groups, which is based on unrestricted maximum-likelihood
estimators described by Wald (1943). The estimadi; of the covariance
matrix for the latent variables is the same as that.for the
SCOuffer-Lindleyﬁmgthod. .Hoﬁevef,‘the covariance matrices for the two
groqp%‘are each scaled in the metric of the error variance which—is
assumed to be t?e same for both groups. This implies that when the group
variances on x, differ, that the reliability of x

] ]
must not be equal. This is in accord with the traditional psychometric

for groups 1 and 2
agsumption that i1t is the measurement error variance rather than the
reliqbibity (or, equivalently, tHe true score variance) which is
ievariant across samples of a population.

The rescaling of the covariance matrix leaves all of the

scale-invariant statistics unchanged, é;g., Tyy ©F l“rYx 2 3

; 1 1

o

tﬁJs, the standardized results of regression analyses by the
Stouffer-Lindley and Stroud methods are identical, e.g., correlationms,
standardized paytial regression weights, and significance tests.

However, the sgale-dependent statistitcs are not unaffected by the

i I
rescaling. Therefore, the bj or 8y ¢ 2 will not generally agree
between the two methods. This reviewer recommends that Stroud's
' S0 \ ;




‘estimates of the raw_ partial regression coefficients and the res{dual
variance be rescaled to the metric og.the true scores (to conform with
the Stouffer-Lindley estimates) for purposes of interpretation an&
descriptioﬁ.1
The contribution of Stroud's methéd is that it provides a

significance test for the homogeneity of regression for two samples.
Thus, it could be used to draw inferences about the differences in change
between two groups. Unfortunately, the generality of the method is
limited by the fact that Fa) samplipg error in the estimates of the

' variances of the.measurement errors 1s not taken inéo account, (b) the
method Qas been formulated for oniy the two-sample problem (although its
author comments that the generali%ation is straightforward), and (c)
separate tests of the intercept ;nd slope parameters are not given so

that tests analogous to ANCOVA's tests of differences in adjusted

-

posttest means (or gain) are not possible. A strength of the method 1s

that a multivariate generalization, i.e., multiple dependent variables,.

which uses Lord's AUTEST prbgram, has been developed (Stroud, 1968, 1974). .

FULLER'S METHODS
During the past decade Fuller and his assoclates have devised s%veral
, |
procedures for correcting for errors of measurement. We wili prese%t in
detail his most general formulation (Fuller, 1980) and then the related
techniques more briefly. .
. The model and assumptions posited byaFulier (1980) for his case (i)
are virtually identical to those stated for the Stouffeg-Lindley method.

Particularly, errors in the model (e) as well as errors in variables

N




(v ) { -

uj are permitted and assumed to follow a multivariate normal

€t
di ution. Furthermore, covariances between errors may Kznzero.

Fuller (1980, p. 7ff) defines the estimator of the structural Parameters .

as

&2"‘&"'3 Suw) te+as ’ . (27)
n n

where a > O 1s a fixed real number ) . ™

fi { .:x:: - .§_ uu | O 1fg21+n-1 (28)
Sx-@-0DSy, , tfg<l1+n-l
E_{éyx'.évu ’ 1fg2Z1+n "1 (29) .
= ,éyx- (g—n )S vu > if§‘<.l+n'1 ,
P‘
. -~ 2 -~ . .
§ ~ | 2vx , (30)
- Sxy 5 xx :
§ 1s the smallest root of ‘§ - éI! = (0 , and
r ] 2 -~ . .
- guy .§_ uu ’

This estimator of b differs from the Stouffer-Lindley estimator in
two important ways. First; the modification associated with g
“guarantees that H 1s a positive definite matrix, that the estimator of

. %
si is positive and the estimtor of b possesses finite variance . . .

.The a-modification givés an estimator that 1s similar to the 'k=-class'

estimators used in simultaneous equation estimation” (Fuller, 1980, pp.

7-8). This latter modification produces smaller MSE of the coefficients

=

in finite samples.
These modifications represent two‘f-‘important advances over the //

StoufferLiné\li?ehnique: Furthermore, Fuller (19803 provides a proof

IIIJ- 15 ’7 =




: confidence limits and hypothesis tests are possible- This limiting

uncorrelated errors and ipcorporates the a-modification, Fuller and

)
of a theorem on the limiting distribution of b which demonstrates that

the estimator is asymptotically normal and unbiased and specifies the
covariance matrix of the estimator in the 1limit so that large sample
sampling distributign assumes.that the population measurement error

variances are known. For a more restricted model, however, which assumes

Hidiroglou (1978) provide an estimaipr of the 1imiting<distributig% of E

which includes information about the variability of the reliability
estimates 1f available. Under the more restrictive comnditions, Fuller-s
T .

and Hidiroglou (1978, Theorem 1) prbve that
) . .

n /2 (f - b) “Cﬁ“ncg, Sxx1 68 xxD) (32)
where the elements of G are functions of the. true XjXj covariances 2
. uy
and the ratios of error variances to total variance, e.g., 1y = 5 2
X3
'If the lj are arranged in a diagnoal matrix as
L gy = diag (I13, 155, « -+, 1) (33)

[

and if there 1s information about the sampling effor of the 1

avallable in the form _
\

nd/2 (- 1>—£‘%N<9,, P) (34)

then . - |
n 1/2 <b-b>—% N, 5 LleSsSwt+ERD 333 ‘

where e . - . 2 !
- |

F = diag (blsxlx12 » D2Sxyxp? s o o, Bybgix ) (36) |

P

For the first (and only) time in this review we find an expressf%h

(Equation 35) for the sampling distribution of §_which reflects the




additional'qource of variation in Bj introduced by the imprecision in

egt#gatiné f&j or sujz. (See a;éb-corollary 3.2 in Fuller (1975,
ps 127). Of all the techniques that have been considered, Fuller's
methods appear to produce estimators with the most desirable proberties. : _
It is hoped that reséérchers involvyed in‘studying change will begin to
use these estimators so that the usefulness ‘of EpI{er's methods‘in.
practical size samples can bebevaluatsg. Fortunately, computer programs
are available for pérforming these anglyses '(éitdiroglou, Fuller, & '
Hickman, 1977; Wolter &.Corﬁy; 1976); A program for performing Fuller's
disattenuated regfession program wfitten in the OMNITAB programming
language as part of this research (Duniv&nt, 1978a) appears in the
. Appendix. | -

Two additional procedures which have been gdeveloped by Fuller and his
assoclates gfserve mention before leaving this.section. Models of
Eurvilinear regressions with fallible measurements have been proposed by .
Wolter (1974), and Wolter and Fuller (1977a, b). These methods may be L

useful in describing the growth curve for an attribute as a function of

level of initial status. An analysis of covariance model has been

procedure cdktains agdification similar to the g-modification described

|
. . : .
developed by DeGracie (1968) and DeGracie and Fuller (1972). Their f2;>
|
above which guarantees the exlstence of the variance of the

pooled-within-groupéhgibﬁe estimator: The estimator of the slope

parameter in ordinary ANCOVA is defined for the observed variables as .
\ .

[y

8
b ~

le

¢
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A

9

where these are pooled-within~groups coefficients based on the fallible
gcores. The estimator of the strdctural parameter which represents the
slope of the prétes; on posttest regreasibn following the

Stouffer-Lindley method would be

8 s ‘
Ble = 1 - *yx1 ~38)
SL 8y 2 (5.2 - 84.2)
Xl X1 uj

. DeGracie and Fuller (1972) investigated the properties of two

estimators of the slope which we presen;>here under the assumption of ¥
. e
E(uv) = 0O: '
- ‘ r
S -
- yxl
b'pr1 = —_— s (39)
8X12
P g
where
§x 2 = | sxle— 3u12 if Sx? - su2 > (1/m)sul2
1 (1/m)§u12 otéhrwise . A

and m equals N minus the number of groups minus one. The second

% .
estimator was suggdsted by an examination of the bias in b1 and is
: DF1

given by
8 - Syx : (40)
bipry = ’

By.2 + 1/m - 25,4 25,4

8% o - 5 u u %

(e ¢ )
X1 Psxlf

E

where p = a time; the number of replicates per group and m (as above) 1s

a fixed positive number. DeGracie and Fuller (1972) prove that b1

DF2
has a smaller bias and smaller mean square error than b1 " + They
. DF1
present an ‘extension of classical F-ratio to test the null hypothesis of

\




1

" which is 'simply a liﬁear transformation of x. Thus, for statﬁstical ‘ '
A .

|

|

|

~ population, so that there’is not a common mean x on which to regress the -

no adjusted group differemces in final status or gain. Although this

inferential Qevi?e does not take into account the sampling error of

2 . . .
su » 1t is probably a much more appropriate test statistic than
1 .

the uncorrected F for investigations of change.

PORTER'é METHOD

The final method to be reviewed wasvf;rmulated by Porter for his
ddctgral research in 1967 énd has been cited frequently since then. The
technique has been more fully elaborated in Porter and—Chibucos (1974)
and Clejnick and Porter (198l1). A very similar method was proposed !
independently by Hunter and Cohen (1974).2 Porter's method, called
estimated true score analysis of covgriznce,_has much. intuitive appeal:
one uses the fradgtional psychometric formula to estimate each

g)
individual's true pretest score and then substitutes it for the observed

score as the covariate in ANCOVA.

2

The estimating equation for true scores for person k is given in most ’ ¢
psychometric texts as i ’
fi = Ty (x =% ) + R | , | (41)

¢

procedures that are invariant to linear transformations, e.ge., multiple
regression, correlation, ANOVA and ANCOVA, use of either x or X produces

identical results. For example, byx = bYX and ryx = Cyye

In ANCOVA;Thowever, all individuals may not be sampled from the same

v _ N
observed gcores. For the case of pre-existing or nonequivalent groups, \
o :

unefual pretest means are usually observed and offer thekpossibility of - . .

regressing an individual's pretest scoré toward his or her group (h) mean:

III - 19
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v K = T (xpi ~ Ep.) + %y,

-~

Whenever pretest mean differences occur, Equations 41 and 42 &111 '
yield different results, and Equation 42 no longer specifies a 1inear
transformation of x across all samples or groups represented in the
study,-i-el, rx < 1.0. Werts and Linn (1971) discuss the choice of l\/

Equations Q&\;:d 42 as dependimg upon whether the group means are

considered falTible. If S0, Equation 41 will regress them toward the

|
t

grand mean. But since doing this produces results identical to those

obtaned with the observed covariable, use of Equation 41 will not allow
us to estimate and test the structural parameters of interest. Thus,
despite claims to the contrary, Porter's method will not produce the

desired results if there are no covariate mean differences.

Additionally, 1f the covariate means are deemed tinreliable, i.e.,
E(u) ¥ 0 within groups, the method of estimated true score ANCOVA fails, .
since it is equivalent to;ghe observed score'analysis. (It should be .

noted that the method in these cases will yield the appropriate estimate

however, b, or the estimate of adjueted mean differences will

of bl;

be biased and equal to the OLS estimator b' 2° )

What are the properties of the estimators obtained by Porter s method

when there are pre-existing differences between the groups? First of

all, the pooled-within-groups estimage of the structural slope parameter °* v
9" -

will be properly estimated as bl' Second, since the estimated true

3

preteat group means equal the observed group means}\the estimate of group

effects or differences between adjusted posttest means will correspond %0

~ - |

the structural estimator. For the two group case Porter's method yields

the following estimator of the treatment effects structural parameter: ' Y‘
III - 20 o
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t =%, -F1. - by (%, - %) - fi;/7‘§1. - b1 (X, - X1.) . (43)
The final estimator of interest in ANCOVA studies of change is the
‘ “ 2 2 '

mean square error or residual variance, SY Xj = se y It 1is

easily ghown (e.g., Porter, 1967, p. 36) that Porter's method yields a

biased estimator of the residual variance; in fact, Porter's estimator %s

)

identical to the OLS estimator sevz- Since sev%2 sezgenerally, the fit of the

structural model will not appear as good as it really is. The hypothesis

"test of the between-groups factor should be conservatively biased by use

¢

of the inflated estimate of MSE. However, this bias mighy{ be offset by

the increase in MSE due to estimation of r,,. The tradd-off berween

11

the upward bias in the residual varianee and the failyre to include the

¥

sampling error of the reliability coefficent as a solixrce of variation in
the estimators of the structural parameters could be suffigient to make
the method work reasonably well in actual research.

The results of Porter's (1967) Monte Carlo studies indicate that the

‘empirical alpha values for the estimated true-score ANCOVA F-test of

adjusted posttest means only slightly exceed the nominal alphas, e.g., an
eppirical alpha of .075 compared with a theoretical value of .05. fﬁis
does not seem unreasonmable in view of rhe fact that Porter's estimated
true covariate scores -were based on neliabilities calcufated as
test-retest cbrrelations based on-sample sizes of 20 to 40.‘ ?Qrter's
Table 20 (1967, p; 100) indicates that the sampling distribution of this
reliability estimate can be badly rkewed for moderate galues-of T x and
have large standard erxrors. 'Iq weuld'be reasonable to infer that the
variance of -an ANCOVA estimator'derived Wwithin the framework of the

Stouffer-Lindley method, e.g., Cohen & Cohen (1975) or Cronbach & Furby.




“

(1970), would be underestimatedx-sometimes substantially so~-because of

the failure to incorporate the sampling error of the reliability of the

e e

pretest. T@}s-fa;t would contribute to a liberal bias in tﬂe,usual

F-ratio based on the structyral estimators, i.e., the null hypothesis of |
N |
; . ) < . L
no group effects on change will be rejected too frequently. ‘ ' |
P |
. » - . . ‘
Porter's method canot be extended directly to the multiple regression

cas;, because there is only a single sample. In that case estimated true
and observed scores would be perfectly co;;elated. However, something of ;//- \
the logie of ﬁaking the ieliability corrections within ;roupé has been - | (
captured by Hunter and Cohen (1974) in their e 1matéd true;gébre S L - ‘X
" multiple regreésion analysis. Following Lord (1956), th%& obta;ggif//’ | \;
multiple regression estimates of Xl based on X, and kz éﬁdﬂbf/#z N é

\

based on x, and Koo (See Hunter & Cohen [1974, Appendii II] and Lord L ' .

1
[1956] for the expréssion for weights associated with_xl and xz.)

Although Hunter and Cohen (1974) do not develop the sampling theory for
‘qurvi%iﬁear relations-. y

A
-~

their egtimators, they provide a general mode% that will handle ; i .‘
|
|
l
X APPLIC}TIONS\OF METHODS TO REAL DATA ]
In this section we revié& énalyses of actual data'ma&e by means of .
one of the correction-for—attenﬁation ﬁgihods Just pfésented. Are
inferences aboutvfactors which ;}fect change different for the
observed-score and structural models? , ,
Several test-retest data sets ﬁave been analxzed by b;th‘the
Stouffer-Lindley method and OLS regre;sion of the observed scores.

Dunivént (1977a) examined the relationships of type of nursery school

'
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a

prcg:am (treatment), age and sex (background characteristics) to change

L]

' in sex-role identity over a nine-month interval. A composite test based
—~

on five measures of sex rolelidentity with an estimated reliability‘qf
+75 was aduinistered to 400 children in September and again in May.
Tpese data were susmittéd to a multiple regression analysis of the |
observed scores and to the cogtectiqn-fcr—attenuatisn regression
procedure desctined by;Cohen and Cohen (1975). The results of the two
analysesﬁdiffered in mAny important respects. There wag even one
instance of sign 'reversal fcr one of the treatment—background factor
combinations. That is, the observed score analysis indicated that one
combination of factors si;niiicantly facilitated change while the
sttuctutal analysis indicated that the combination inhibited growth.
This exsmple clearly demonstrates the errors of inference abo't change
that can result ftom‘errors of measurement.

In-a major reanalysis of Project Follow Through datajgsing Cohen and
CGhen s (1975) method, St. Pierre and Ladnet (1977) fournd no effects
which differed in sign between the corrected and uncorrecQEd ANCOVAs.
Howe;et, the percentage of changes in inferences about treatmént effects
on gain ftom the bbserved.sco:e to the corrected ANCOVA was as_great as
21%Z when a ptetest,reliabilty of .6 was assumed, e.g., f;om'null to
positiue, negative tc null, etc. The neans of the stdhdard. errors for
their significance tests ware all smaller than those from the uncortected
ANCOVA. They concluded that cortection of the pretest for assumed ‘
unreliability can lead to changes in the cqnclusious that an evaluator
reaches in terms of the rank order of sponsors as well as the overall ;f‘;

o . o

level of ptogtam effectiveness (across sponsors)” (St. Plerre and Ladner,
bt P ' N

1977, p. 21)e _ {
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Stroud (1972) used his method of comparing regressions based on
fallible data to determine if the 'pattern of change in school achievement

differed for males and females between the.njnth and eleventh grades.

The\results of his asymptotic test for equality of regressions and

w

co tional variances did-'not differ from thos%w?f the uncorrected

S

tegtessioné. .. v i ’ / .

~ ‘ - .

Several applications of Fuller’s methods have been presented. Only

oné is directly ;g;evant to our present concerns (see below). Rindskopf
(1976) used DeGracie and Fuller's (;972)‘disa£tenuated ANCOVA method to
teanalyze data from the national Head é;att evaluation (Circirelli, 3965)
and Glass's (1970) evaluation of ESEA Ti;le 1 programs. When low
estimates of pretest reliabilitié? were uséd, the DeGracie—Euilet method
yielded different conclusions than did uhdortecteg ANCOVA for b;th ¢
evaluations. Specifically, Head Stattiptoduced significant gains in
Metropolitan Readiness Test scores for black children acéotding to the
DeGracie~Fuller tests but not according-to traditional andlysis of
covarlance. The analysis of Title 1 rearding scores using cléssicalr
ANCOVA indicated ;Vsignificant negative effect of ﬁatticipétion. When
lower~bound estimates of reliability where inserted in DeGracie and
Fuller's method, however, the differences between control and tfeatment
gfoups were not significant. Rindskopf's (1976) teanaiyses piovide
another important degqnsttation qf the potentially deleterious
consequences of measuremeﬁt error in dréwiag inferences from analyses of

observed change using analysis of covariance.

The other applications of Fuller's methods are not suitable for our

purposes because eitth they do not relate to phange, or they do not

n -2 g




report comparisons with observed score regressions. However, the

o,y .
examples do demonstrate that the b'j can either underestimate or

LY »

-overestimate the bj (Fuller and Hidiroglou, 1977; Warren et al.,
1974). Additionally, the Warsen et al. (1974) anal;éis of mdnagerial
role perfdrman&e yielded estimates all of which had larger standard

errors than.-those from the corresponding ordinary neg?ession. They
sugﬁest that this result 15 almost always to be expected. When comparing
the performances of Porter's (1967) and DeGracie and Fuller’e (1972)
.methods with real data, Rindskopf £~976) observed that the sagpling
Afiances of the Degracie-Fuller estimators always Lxceeded those of
/Z (1974)

Porter. These results provide some support for\WaerF et al.

-speculation.. Contrast this with St. Plerre and Ladner's (1972Q\decrease

-—-’\

in standard errors with the Stouffer-Lindley method. N

(1967) method with Head Start and Title 1 ESEA data. He found that.the
corrected results,fromvferter's method contradicted those from classical
ANCdVA 1d the sate ways that were described above for the DeGracie-Fuller
method- Porter's method'appeared to be more pewerful than that of
DeGraciewand Fuller leading Rindskopf (1976) to recommend it, especially
in situations where the\edvariate has low reliability. This conclusion
must be regarded somewhat skeptically{ however, sincz it appears that
scme of Rindskopf's corrections where invalid, since they created
nonGrammian covariance ﬁatrices; Although the Degracie—~Fuller method
insureeg that such 1mposef51e ma;;ices will not be counstructed, Porter's

>

. ANCOVA correction method does mot. Researchers wishing to apply

~

correction methods in order to estimate true-score effects must be

RindsRopf (1976) alsdﬁbrovided a demonstreéion of the use of Porter's"
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careful with both the Porter and Stouffer-Lindley methods to use
reliability estimates that do not generate impossible data.
Ole jnick gnd Porter (1981) fecently pointed out some impcrtant v

considerations in applying Porter's correction method &aud additional
- N Pad

7

iliustrations of its appiication. 'Porter and Chibucos_(l974) furnish a

hypothetical example in which the dcsetved score and‘estimated true score

.ANCQVAs lead to|different infenences. They conclude that the estinated )

true—-score ANCOVA should be used to evaluate changé, when the pretest ié o
faliible and pre-existing diffefences between the groups obtain. .

CONCLUSION ‘ . -
This concludes our review of the ma jor cortection—for—attenua@ion
methods which can be used test-retest studies of change where information .
T about thé reliability of the pretest is available. We have cdliected and

s
analyzed methods from statistics, education, and the social sciences. ’

The methods of Porter (1967), Stroud (1972), a d DeGracié and Fuller ‘ 4
(1972) can. be used in situations appropriate for the analysis of'

. covariance. - 0f these, Porter's and DeGracie and Fuller-s procedures have
the more general applicability. The exactness of Stroud's mechod, .
. T ¢ : . - D ‘
however, strongly commends it for the two-gruup design. The - \ : .8
}DeGracie-Fuller method appears less. powerful than Porter's but this
. Y ‘
disadvantage may be‘%ffsét by reduced bias and greater safety.
For the more general multiple regression kinds of analyses (including
’NKN?FVA), researchers may select onehof the Stouffer-Lindley ar Fuller

methods. It seems clear that for data which conform to the usual

, assnmptions of normality, homoscedasticity, etc., the statistical

N\




',associgtzd with estimation of the true-score regression welghts have been’
< . .

\,

N

estimation ;nd testing .procedures devéloped by Fuller (1980), Fuller and
Hidipogiou (1978), and Warren et al. (I974)lw111 prove superior to the
Siouffer-Lindley methods. Not only are Fuller's methods safer in the
sense that they preclude the estimation of singular covariance matrices
(of thefprzéiptor variables), they yield significance tests which are
valid for finite samples. We have been unable, however, to establish
analytically which techn;qug possesses greate; power. This isSué is

addresgzd in the simulation studies reported in Chapter VII. A

It can be concluded from our review that most of the problems

solved by‘the propo;ed methods. The unsolved problem of greadtest

— —— e o

importance involves tﬁe uhﬂiaagd estiﬁation of the sampling variances of

0

the disattenuated regression coefficients and the validity of associlated
I_ Y ~ —_— . p
significance tests. This chapter has helped to clarify and refine thege

1

issues, and the simﬁlation studies reported below add further insight.
Questions 1n601ving the type of reliability estimate to use and the
f .

heterogeneity of regressions constitute important probleme—that need to

be addressed in future research.

The applications of the correctibn.-methods to real data amply

- 11lustrated the kinds of errors of inference that may:have resulted from

= 2 -~

errors of measurement in previous investigations of educatioral change.

"It is hoped that the explication and evaluation of the

attenuation—correcttion methods provided in this chapter will encourage

and facilitate thelr use {5 future studies.




POOTNOTES

- -

INote that this is in contrast to Stroud's (1972) suggestion ‘that the
appropriate bjlqre'those from the rescaled covariance matrix.

N 2An approximate method, which is very similar in definition to Porter's,
has been proposed by Corder-~Bolz (1978) and evaluated in simulation studies.




CHAPTER IV

¢

ESTIMATLION OF LINEAR FUNCTIONAL RELATIONS //

INTRODUCTION

The purpése of this chapter ig to analyze the problem of determining
if a perfect linear relation éxiéts among two orfnore variables and Eo
review some statistical methods that havebeen developed to estimate;and
test linear functional relaticns. By definition, a linear fpnctional
relation (LFR) exists if the true scores on two (or more)‘measurés are
perfectly correlateds Although most ofqthe statistical work on LéR has
been done by econometriciéns, a problem has been iﬁvestigated which 1s

formally identical to LFR in the field of psychometrics.

"Psychometricians have developed several statistical tests of the

hypothesis that two scales measure the same attribute except for
differences in means, units of measurement, and sta;dard errors of
measurement (or reliabilities). When scales satisfy these conditions
they are said to Qe’equivalent or congeneric. As 1is demonstrated below,
equivalent tests are rglated by a linear functional relation. The
correlation between equivalent measures, l.e., between two variables that
have a linear functional relationm, when.corrected'fOt attenuation

(unreliability) is 1.0. In this chapter the diverse theory and methods

from econometrics, statistiés; education, and psychometrics are

collected, compared, and integrated. Several new results are derived for-

the errors—in~variables problem which should prove helpfu’ in analyzing
: |
change occuring in measures which contain efrors of measurement.
Testing hypo@heses about LFR or'the equivalence of measures has wide

application in the analysis of change, although this has not been

/ . i
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recognized heretofore. LFR méthoda-could be utilized in test*éétest 

studies which arg designed to provide sep;rate estimates of unreliabiiity

and instability in the measures (sece Heise, 1969). Since WFK rep;ésents‘
posttest:scores,;%;eﬂ,‘no stochastic error (see Fuller; 1980; Is%%c, ’
1970), LFR methods could be used like any of the methods in the .previous
chapter to estimate and test hypothéses about chagge. This has been done

X -

previously in economics but not in educational research. Some of the LFR

|

|

1

|

, , . |

a specific model specification about the relation of thp pretest. and -
. . . < L

\

|

|

¢ 1

|

|

models could”be usefully applied to the prob;em of %nferring causal - ( A
effects 1n cross~lag panel»correlations In/éhe.context of the general |
(LISREL) forﬁulation of change in latent v;riables presented in the Q
second chapter, som; of.thg methods for assessing the equivalence of
scales could be employed to evaluate the adequacy of the multi-~indicator
measurement models rglating the observed to the true scores. Finally,
LFR methods could provide valuable insight'concerning the invariance of
measurement metrics an4>v§11dities over time and between groups in
program evaluations (see ﬁejaf, 1980).

It is hopéd that this review of LFR methods -and the derivatioﬁ of new
results will prove of value to elucational researthers who are concerned
with the precgding problems and statistical methods. The remainder of
this section is devoted to giving‘a precise méthematical formpIaﬂion of
11neér functional relations and equivéleqce. In the next section
definitional issues cdn#erning various types of equivalent measures are
discuésed. After notation and dataglayout conventions have been

introduced, methods for determining LFR are reviewed. The methods are -

!

organized according to the type of information they require. Thus, the

N
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review is divided into procedures that require replicate measures and
1S

those that use information about the variances.of the errors of

s .

measurement .
For. the purpose of exﬁqgition let us assume that the followlhg simple
measurement model} holds for two observed tests, x and y:

x=X+e, and (L

(2)

<

y =Y+ e

y

where x and y are observed scores, X and Y are unobserved true scores or
latent variables, and ex and ey arﬁ random errors of measurement. By

definition x and y are fuﬁctionally related measures 1f the correlggion

between the true scores X and Y is unity, i.e., they are equivalent.

- Although generally x and y will be pre- and posttests, respectively, the

model does not require this.

J

The correlation amorg the latent var%ables can be estimated in
several ways. If the reliabilities of the tests are known, then the
correlation between the true scoreS“(rYX) can be estimated by applying
Spearman's (1904a, 1904b, 1907, 1910)\€orrection for attenuation to the

sample correlation -between the observed varigbles (fyx):

£ | (3)
i T\ JAE (D) |
yy X3
If there are multiple ﬁeasurea or indicators of X (say, Xy and x2)
and Y (say Y4 and y4), alternative estimaéors of Tyx are _ { (

avallable. For exaumple, Lord (1957) giveé the maiimu& likelihood

espimagg; as /'

o A A -
i _ Syt Bty S, - )
YX A
b/ 815 8y,
\
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‘(For alternative formulas based om the same covariances, see Kelley
[1947] and Werts & Linn [1972].) Given a-particylar estimate of Tyy

7

the problem is to test the hypothesis that in the population Tyx =

' _ r
1.0. The null and restricted alternative hypothesis may be written:
Hy @ Ty = 1.0, | (%)
Hl : rYx<l.O. \ ’ (6) ~ -,

It is also poséible to exé;ng these hypotheses as tests of
restric;io;s placed on the linear model relating Y and g. Recpg?izing s
that Y and X may differ in their means gnd thelr scaiing or unit; of
meaSurements, we write

81 Y =c+ g2X | . ' (7,)\w
where g, and g4 are scale coefficients and ¢ is a constant’ which is a
function of.the differences in neans betwéen Y and X. Sinde g, and
gz'can be absorbed into a new coefficient g = gl/gz and a new
intercept defined as a - é/gl, Equation 7 expresses Y as a linear o
‘transformation of X. Note that the structural mon% given by Equation 7
does not include a stochastic term to incbrporate the e fects of chance‘
distrubances or misspecification into the ﬁqdel. As stated, it holds
that a perfect linear relation exists betwéeﬁ Yvénd X. This is referred

to as a functional felation fﬁ‘thexsfatis;iCal literature (Isaac, 1970;

Kendall & Stuart, 1961).- The null and altermative hypotheses to-be

~

tested ere: *
. - -c = ' 1
%O : le gZX c =0, | (8)
Hy : g1¥ - gyX = ¢ # O. | L9

Ir shoﬁld be apparent that since coffelations are invarlant over %hanges
in scale and origin, the null hypotheses givep‘by”ﬁéuations 5 and 8 are

the same.
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There is a third way of formulating the model that will prove useful
in developing some of the statistical tests of equivalence. To Equation
7 we add an errbr term f representing random fluctuations in-the fit of

the model:

g¥'=c + g X+ £ - (10) .

If the model fits the data perfeétly, the error i the equation, £, will

be identically O for all members of the population. Thus, the hypothegis

of equivalence or perfect linear relation among true scores X and Y can

be evaluated by testing if the variance of f exceeds zero

= 0, : . , _ i (ll)

HO : sf X
Hg: s 2:> 0. \ o ' C(12)
1 £

The null hypotﬁesiS'given.in Equation 11 is the same as those in
Equations 5 and 8. |

A variety of different ways of-tesging Equations 5, énd'h; aﬁd 11 )
undér various types of assumptions‘have been proposed. In order to
explicate these methods'andltﬁéir assumpfions we now define equivalence
and'pfesent Jdreskog's model of coggeneric tests. . !

. . DEFINITION OF EQUIVALENCE AND CONGENER;C TESTS

In the develoémentﬂdf classical testwthed;y the‘concept of striétly
parallel test; has playéd a crucial tole.: Strictly parallel EeSts by

defiB;r{;n are tests which have equal means, equal variances, équal ‘

covariances,;;a equal validities with respect to any criterion. It

‘follows that parallel tests have equal standard errors of measurement and

-

equal reliabilities. A person has the same true score on parallel tests

(Gulliksen, 1950; Lord{&'Novick, 1968). Gulliksen (1968) argues that

J
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‘scores onfparalle; E;sts are compf;tely "inter;changeable."' That 1is,
séores éromlbne parallel test can be substituted for those for-anothé;

S E parallel test without any loss of inforﬁétion what soever. Obviousiy,
parallel tests satisfy the criterion for equivalence, that is, they
ﬁéasﬁre the same trait except,for errors of measurement. However, other
tests, whiéh do not meet the rigérous reqﬁirements for parallelism,
1ikeﬁise:satisfy thg criterion. For exampie,_tau equivélent tests, i.e.,
tests which meet all of the requirements for parallelism except that théy
have different standard errors and consequently unequal reliabilities |,

(Lord & Novick, 1968), measure the same underlying attribute. While tau

equivalent tests measure the same construct, they do so with varying

degrees of accuracy (reliability). The ﬁodel for Bssentially tau . S
equivalent tests goes even further by relaxing the réstriction on equal
means. JThus,. an iﬁdiviéual will not necessarily have gqual true scores
on eBsept}ally tau equivalent testé; however, all true scores on one

. essentially_tau equivalent test will aiffer from those on another
essentiaily tau equivalent test only by a Constaﬁt.

The most general model for tests that measure th; same attribute
-except for errors’of measurement is Jdreskog's (1971) ;heory of
° congeneric tests. In this model almost all of the restrictions on _— o
" parallel tests hgv%‘been eliminated. The tests need not possess equal

' true ﬁeans, efual true ot error varianceé, or equal reliabilities.

Individuals 40 not have to have equal true scoresipn congeneric. tests. -

a

This implies that cougenefic tests have different origins, or means, and |

- .. different scales,'or units of measurement. However, true scores on one

Y

congeneric test are a perfect linear function of true scores on another, v !
. ' ) ' -

\

|

|
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7

1

J

éongeneric test. Congeneric tests meet Gulliksen's (1968) criteria for

"scientific equivalence,” that is, tiey measure the same underlying

> A

attribute. In factor analytic terminology congenerlc tests reflect a
single general common factor. Thus, although congeneric tests are not

strictly inter-changeable or subséitﬁtablé'and'do not possess equal

g T T

accuracy, they contain information about the same  latent variable which

underlies each of the tests. A detailed comparison of the various test

5 —

models is provided in Table 1. Throughout the remainder of this chapter ]

-

we shall

Insert Table 1 about here

V-

<y

use the terms.equivaleqt and congenerié synonymously. For most reséarch
applications it 1s the coﬁgeneric type of‘equivalehce that wili be of
interest. Now these ideas about the equivalence of measurgs,is given a
more precise mathematical form by deveio%ing Jafeskqg‘s (1970, 1971,
1974) theory of congeneric tests.

Let us assume that there are two replicate measures on each of two
scales x and y-any definition X is congeneric with~x2,.and Y3 is
congeneric ﬁith yat thle thg‘rep}ications may represent'two i%;eraa&e
forms or test-retest measurements on the same test, in most cases theJe
replications are obtaipmed by splittinévtests xvand y into hal;éél -Such
split»halvesugay or may not be paréllel; but they must be congeneric for
the following devélopments to hold. These congeneric replicates or
multiple indicators are necessary in order to ;qentify the parameters of
the true and érro; distributions. Withont the'édditional information

.

provided by the multiple measurements the trye score correlation cannot

-




. be estimated or tested against a hypothesized'valﬁe (e.ge, 1.0). The

reader is referred to the text by Hanushek and Jackson (1977) for an

J -excellent introduction to'wﬁ§ problem of identification. v
. . & N : . - ta .
According to classical theory the observed scores can be written as a -
[} - . N o > R . ‘}‘ ~ .
liﬁegr composite of true and error components: )
x) = X) +ep, ' s - (13)
. ' “t‘\
X, = x2 + €9, (14)
yq = Y3 + e, ) (15)
| - yl‘ ’Y4+§4 ) (16)

T

where Xl, Xs, Y3'and ¥, are true scores and the ey are random
3

errors of measurement. Under the classical as tions true scores are

not- correlated with errbrs, and errors are all mutually uncorrelated. .

(S

Since by definition the correlation betwegn'cogeneric tests is 1.0,

~——

rxiXZ = fY3Y4 = 1.0. Therefore, new random variables X and Y can be,

defined which are perfectly linearly ;élatéd'to the true scores on the
> o .

=

individeal tests xl, X2 and Y3, YA’ fespectively, as follows:

& X, =m) + bX, ' (17)
i X, = my + byX, : - (18)
.o Y, = my + byX, | 1 | (19)

\ Y, = m, + bX, | a (20)

Substitution of Equations 14 through 17.into Equations 10 through 13
~ .

ylelds the congeneric measurement model:

- B x; =m + bX + ey, . T2
X, = m, + b2X + €y . ’ (22)
yy = my + byY + ey, 0 (23) ‘
Vo T O, t BT toey, . . @8 |
' . - |
: ,é l
1




In_qatrix form this result may be written

y " ’

- c:. r’ ' -
x, [ - by O e, )
* !
.
A B4 | 0 by % : i
/ . ud .\ b
x = n 4 B £+ e e (25) 1
. . : ' ' . . |
where x is a vector of observed scores for an 1nd:l.v1duaé.:g m is a vector ) , ‘¢
of means, B is a matrix of scaling coefficients, t is a a;ctog of true L?
scor7é anﬂ e 18 a vector of errors of measnrement . .
Without loss of ganerality we take the true scores to be*expressed in =
standardized forms (£ (X) = £ (Y) =0, VAR (X) = VAR (Y) = 1.0).
Then the structural model relating : to x is
| g;lt - gzx, or alternatively , ' o (26)
' . - . ‘
Y= :; X = gX, and g ' : | (27)
the covariance matrix of the vector t is .
1-0’ er . N i ’ ) : IS
.Sxy = |- ‘ '
. . ryx 1. 0 , (28) -
" From Jdreskog's- (1970) covariance structure analysis the covariance matrix WO
‘of .observed variak}es can be writt?n as a function of the parameter
matrices ) :
o . .- Fb 0" .
-] f11 812 813 814 - P1 , . .
8,1 825 533 Bp4la by O [1.0 ryy byby0s O ;
841 %2 %43 %44 |9 bﬂ_' ° _ L
o ; e
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It 1s also‘ﬁossible to specify the’farametric structure of the mea

vectqr within ;Sreskog's (1970) Analysis of COVariance Structure model

(ACOVS). Let D be an N x 4 nmatrix of scores on tests X,, Xy Vg

A

and
RN

— . N
from & sample of size Q, Ean Nx'1 matrix of ones, and G a 4 x

- 4 matrix specifying constraints on the mean vector. Then the population

.

= .‘meané are structured as,
F@=Ez g

When.G is the identit:y'matrix, ﬁ (@) = m'.
‘ )

.

2]

If x and y are cogeueric, then T "will equal 1.0.

Xy

” N

P

—_

(30)

That is,

. gzlgl.? g = r'xY = 1.,0. Thus, testing the hypbthgsis that two

tesﬁa x and y measure the same attribute*except for differences in means,

units of measurement, ‘and errors of measurement (or that x and y are

.

scxentificaily equivalenﬁ or that they have a LFR) reduces to testing the

7

hypothesis that r XY %= 1.0. Under cogeneric assumptions the parameters

*

blf

el 82 83 ea

b2,~b3, b&, ml, D, m3, maﬁws s 8 5, 8 , 8 are free to assume any

re#l finite values. A path diagram for the cogeneric model is p;ésented

4 g *
o, in Figure 1. Since the true scores are st andardized, th
.. . ¢ Y
‘must equal 1.0 when x and § are cogeneric.

— . -
5 y

. Insert Figure 1 about here

S v = 10 95

e coefficient g.
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1, . Before concluding thia gection a final point should be made |

3
. - o i < i

concerning the;rank of the matrix §-xy' If x4, X9 y3; y, are

P all congeneric;'then Equation 23 can be rewritten as

A @y i [by] €
LI oy by )
x3 f o mé +\' b3 e + eq .
y v L,xl‘“ . . Lma | b, * e, ‘?"

x ot o+ b+ e . (31) : .

and Equation 29 as ‘ Y & .

- s _113 v £ - PR 5

- xy 2 ee

which 1is formally equivalent to a factor analytic model with jone common’

factor.' When ryy 1s_un1ty, the rank of S .o and 8 yy equals oae.

" s TeSting the restriction Qhat Tyy -‘IfO is equivalent‘&o"tesfﬂng whether
a single factor model fits the data (Gulliksen, 1968; Jéreskobg, 1974).

The path diagram for the one factor model is depicted in ngure 2.

v ) Insert Figure 2 about here

-

-

- : DATA ORGANIZATION AND NOTATION'

» N .
.

In order to facilitate our comphrison of the several [statistical

procedg;es for deterqining LFR and the equivalence of me sures; a common ) F/T\\\f\\
data layout and notation will be employed for all the procedures. Eiret, A ‘
we assume that there are measurements on two tests x apd y which ha#e_

, been split into cogeneric halves: X, and xz'ﬁf?d y3 nd ya-as

was described above. Thus, the’cogeneric measurement madel specified in -
Equhtions‘lS through 21 holdg. The scores for N peysons_on the four .
tests are organizeq)according to the schema presen ed. in Table 2, which T

- o also illusprates the notational conventions that
i & .

ave been adopted.

~ g . [y : . v

‘g a -
. 1y - 1ﬁf/ O . R

1 q»r . - : . . -\
Lt et
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insert Table 2 about here °

1 4

&hg population covariance watrix ;f the vector\(xl, X5 X, ys, 24

may be expressed in lower tria

g

ngular form as

il

811
81 %22
) le sx2
(xl’ x?l x’QY3l Y4’ ?') 831’ 832
; 841 %42
N Lsyl sRz

The estimator ofg§.derived from a s

elements of which are deviation sums of squares and cross products

divided by N-1 and symbolized §5 8. The es

)

. correlation matrix

[ 1.0
. Toye 1.0
R : Tx1 Tx2
(Rps %y Y30 V40 V) | a1 T3
, b | Fa1 T42
Lryl r

/

We will refer to the entries in,§_(x1, Xy X, y3é yh, y) and R’
(X, Xo» Xs Yas Y0 ¥) frequently in the
1’ 72 » T3 7y f

definitions of the o#her vectors and matrices remain as givgﬁ in the

- (symmetric)

L 3 -

8

, XX

83x 0835

S4x %43 Tas
8yx %y3 Syé

y2'

‘(syﬁﬁegric).
1.0

Ta, 1.0

T/ r43‘ 1.0
Tyx Fy3, Tya

’

preceding sections, e.g., M, B, §;XY’ etc.

-

S-
yy

15 derived from §_and may be written

]

1.0

%

»

N

timator of the population

sections to foliow. The

y)

’

amp1e~of'size N will be, dencted S, the

(34)

-
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REVIEW OF METHODS FOR DETERMINING EQUIVALENCE - -
The purpose of this section is to explicate and compare seuen
. statistical methods designed for. determining if the true scores from two o

or more tests are perfectly linearly related. They are divided into

three sets depending upon the type of information or data required. The

- -

X
. first group contains the three best methods of those which require o '
replicate measures of each scale: Joreskog (1971), Kristof (1973), and . -

Lord (1973). Gulliken (1968) and Dunivant (1979) have reviewed other °

& B
* less optimal procedures in ‘this group.

In the secbdnd set- are three methods which asgume information is

- - . R \. 00
. avallable about the covariance structure of the errors of measurement.

While such information can- be obtained’gm replicated data, it may come '
from any other independent sources. These methdds, which were feﬁmulated
primarily by statisticians concerned with estimating and testing linear
. - ‘functional nelations, include the methods of Koopmans (1937) and Tinter .
(1945, 1946), Fuller (1980), and Joreskog (1971).
The third (et of methods inc ludes only Fuller and Hidiroglou's (1978)
method for testing matrix singularity when lndependent information about

the reliabilities of the variables is available. The procedure uses the

»

reliabilrties to adjust the covariance matrix of observed scores in much

the same way that the estimates of measurement error variances are
k3

ES

5 utilized by the procedures in the second groupe. Indeed, all seven‘

procedures are very similar 'in logic, if not in mathematical detail: . .

- *

-
each uses inflormation about €he covariance structure of the observed

«
. ~ » ! .
v

measures and errors of measurement (from replicate measurements, error
. yariance estimates, or reliability estimates) to estimate the parameters

- "'. of the linear functional relation.- S

< ®

« . w-1 Ui
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' h A
N To the extent possible the same outline has been followed in ‘
describing each of the methods. At the outset the statistical model and
its assumptions are stated. Then the null and alternative hypotheses
which are tested by the procedure are specified. Next we provide.the
eomputational fdrmulas for the test statistic.and describe how its
significance ig evaluated. If provided by the test developer, the,7

estimatof'of Ty under a true alternative hypothesis is presented.

“ ) * * .

| Finally, an evaluation ofdthe test is mads ~ For example, evidenc%~which
contradicts the validity of the test isﬂdiscussed. If the efficiency of
a test relative to one or more other tests is knovm, the superiority of
the method 1s pointed out. Relevant Monte Carlo results, i1f available,
are summarized._ We also demonstrate that some teéts differ only in

. comput at onal methods, &.g., 1in thg way the likelihood function is
evaluated; They are identical statistical tests in all c¢ther respects.

We begin our consideration with'the methods of the first set which
- . ) 1 N .

D
require replicate measurement 8.
- \

Procedures Using Replications

&prd-Villegas Test

~

Iin 1973 Lord demonstrated to psychologists how a statistical
.procedure developed by Villegas (1964) to estimate linear functional

. ~
_ relations could be msed to test “the hypothesis that two sets of
<&

*
measurements differ only bec ause of errors of measurement and because_of

differing;origins and units of measurement (Lord, 1973, p. 71) The
%.
assumptions of the Lord-Villegas procedure % re summarized in Table 3, .

- - v
« / \




¢

" Insert Table 3 about here. %
J - :

which . 1ls taken from Iiunivant';s (1979) review. The reader will note thét.
in addition to the classical assumptions about trye and error conponente,‘ e
the\model requires the errors of measurement/from any pair of tests to |
follow a bivariate normal distribut ion. Hiwever, \tne error% of L
measurem:mt for tests x‘l and x, may be correlated with'those fro:n
y Y3 and Y4 Altheugh' it is not st-ated by Lord, Kristof. (1973) pointS"'" . -
out that the Lord-Villegas test requires that X,y “be parallel with %,
and Y3 with yaj In‘spection of Table 3 reveals that the Lord (1957)
test differs in. asaumptions from the Lord—Villegas method primatily in
terms of which components are required to be jointly normally- distributed
and the correlation of errorse.. Al;o the Lor,gl—Villegas test does not ,
depend on sample size for its justification.

The null hypothesis rfst'ed by the‘Lcrd—Villega\s \p'roced_ure is precisely 'h
that the two tests X ‘and ¥ are c0ngeneric or scientifically equivalent ,‘

kg

i.e., Ho:‘ Tey - 1-0. The alternative is that the linear relationsl;i>p :

‘between the true scores.i8 less than perfect.
In order to perform the Lord‘-Villegas test we must compute‘'three new

msHt rices. Let:l us define the matrix W, a within persons matrix, to be

L 8 ' 2 Sxy 1. _ , » . :: bl ' . . 1
U L o (35)
nd . 8 s 2 . P c N
By Yy ‘

i

T I st L
. 8 - (x ;.- X ) , : 36)
Yy 1=1 =3 A i. " 0




A}

A % N 2 ‘ ' ' , .
o n A ? - 4 = - : 8 - )
- . ‘4‘ . xyw --; ley’x.’ , '” t 1,‘”}:‘1 j-% (xij - xi.) (yi(j+2)- yj:.)’ and (37) i
: o Co i 82 :
Lo Z "z (yi 7! ¥ . (38)
.yw el R S |

The reader will recal,l that all of the symbols are defined in Table 2

AN
except xi. and Yi. which equal [(x47 + x42)/2] and [(y11 *+ yiz)/Z], :
RS respectively. '
Next the among persons sums of sq’uares and cross products matrix A is
. written -~ z ) ,
: | 8 2° 8, - |
, . ’ }{’A ' kyA . . . “\
' -é- - - ? - ’ ] i (39) a® . \
! ' 5 &y 2 \
' Y}EA‘ A s ’ s [}
: where - ) ) . ) P !
. - N
02 -2 » / « i
5 - 2% (my = Xe) {,'\ / (40),
A T - \
. N : = I
’ .‘\sxjA = s"A ) 212-:1 (}.{i-‘ - x.a) Gy, "Y.) (40) .
® » * , ) ’ |
. , ) ' 3 j
. 2 -— — 2 ’L
~ s - zz (y - Yae) y. (41)
’ . YA T w1 i T 7
' Now Me*select the significance level at which we wish to evaluate Ho, ‘
say «.05. From t!\'tabled values of F we find the 1-05 = 95 pencentile of _
P
X the F distribution with N and N degrees ‘of freedom. Finally, we evaL-uate .
) ; the det;ermi.nam:2 of matrix C of,ordez; 2: / ‘ . g
~ B - ICI - |£§.' Fos @ | - (42)
ures is rejected at < +05 - ,

The null hypot:hesis of equivalent meas

aignificance_ 1evel if the deteminant is positive and if both diagnoal .

terms are also positive, i.e., "Hy, is rejected if and o'nly if the
/‘2 o




matrix C is positive definite™ (Lord, 1973, p. 71). Lord (1973)

g ) explains that the -test 18 slight 1y conservative in that a true null will
2 _/ be rejected somewhat less often than the value of  would indicate.

Y

. Simulation experiments have verified this (see Dunivant, 1979) - However,
L

f the method is almost as powerful as Kristof's (see below), which has the

al

greatest power ahong those procedures which _have been compared.

2 < . -
il ~ 3

The'control of Type I error, power, computational'simplicéty, and -

scaewhat 1ess restrictive assumptions of the Lord—Villegae procedure as

compared with several other procedures (cf Table 3) would seem to

-

commend it to gemeral use. Eowever, Lord. (1973) oautions that’the
procedure may be very sensitive to- correlated errors within tests, i-e.,. .

when LY # 0 and T, e ¢ 0. For example, positively correlated errors !
RS | 2 " €3%4 T

will tend to increase ehe elements of W and consequently to decrease the

¢

probability of rejecting Ho . “The extent to which this procedure 18 R !

affected by violations of aseumptiona-concerning measurement error

correlations, linearity, and normality-is unknown. Since educational and

Y .
.

v

psychological data will Sften,fail to satisfy such assumptions, the® " .
robusmness of -the Lord—Villegas testrie an important question. . : o,
»Kristof 8 Test A ’ Co ‘ ‘

~

Kristof s (1973) method for testing if a perfect linear relation e
exists between the true scores X and Y repreSents a significant

liberalization of ‘the assumptions of the parallelism of Xy and X, and

Y

» .
of Yq and v, required by most of the procedures based on

-

replications- In fact, Table 3 shows that this method makes only three ~

assumptions: 1) that the errors of measurement within scale x and within

@

scale y are uncorrelated, 2) that the errors are not correlated with true ' &

: : 105 S

e . IV- 17
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scores, and 3) that t

he errors are multinormally distributed. Kristof's
4

test appears to ‘tequire fewer restrictive assumptions than any of the

other methods.

o

.cqrrelation, hence me
'measurement. This hy
modeI that true acorea:pf two psyChological tests satisfy a perfect

liﬁear relation” (Kristof, 1973 P 101) This ﬁay be written as:

O

The reader should not

~

- The null hypothesis 1is "that two variables have perfect disattendated .

asure the same trait except for errors of

pothesia is equivalent to saying, within the «adopted

: & X + aZY +ay = 0 (for ass a f 0). (43)

ice that either\al or a, will be less than zero,

0°

.e., will be negative, der H Equation 43 qgn be rearranged'to

clarify the nature of

the |perfect linear relation: /p

ao a ‘
y = AP : (44)
82 82 ) <.

obviously, if [ (¥) =

; X) = 0 and var(Y) = var(X) = 1.0, then “31/32 - ryy -

The alternative hypothesis holds that Equatiocn 43.is nonzero.

In order to drive
variables‘f1 and f2:

f'l - alxlw+ a2¥3.
Sy magka YA,

‘Kristof's;aest gtatistic we define two new

-'alx1 + a2Y3 + ae, + a,eq, (45?
- n ’ 4
alx2 + a,¥, * ajey + age, (46)

$Refer to Equdtiona 13 tnrough 24 for definitiona of the variables.)

Kristof observed that

when Ho is true, fl and f2 will correlate

exactly zero. Thus, Ho can be reformulated as Ho: rf'f = 0.

12

1f tf £ exceeds the critical value of T g for a

12
prespecif ied % 1eve1

aécording to Kristof

12 .
then Ho ia rejected., The test is conservative

(1973) so that "if rejection of HO occurs, then

-

.> ) “l A l

v - 1\8
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the true corresponding‘ 1eve1 °< will not exceed X, A <4 " (p.

108)/In o er to test HO’ we compute the minimum possible value of

«
4

>f f given the data subject to the restriction ‘that
12
a;s a, % 0. Lletting rmin be the minimum value of re ¢ ,\compute-

L

(47)

.t = _‘pin  N-2 ‘ ‘
. - ; l-r,y4, ) . _
- If t'ne sanple value of t exceeds the tabled value of t for N-2 df, then
. we reject the hypothes;ts of equivalence of 1: and y- A one-tailed test 1s
performed because of tkne asymmetry- of the alternative hypothesis, H\: r ‘q.o.
¢ , '~¢:{ “Kristof (1973) desdribee geveral tests which are based on different ' -

éssumptions com:erning the parameters of the error distributions.

However,’ we shall develop only the least restricted model. As a first
. . ' N
step in computigg’*@min we rearrange the rows add columns in S Xy to

A . . '

form S
< . 3 ) }
. - |
\ s1; 813, %12 S14
. ) )
S5n 0 S 33 %33, %32 %3
\ s = |gTtigs| ot T e e
: 512 1 S22 | 81 5231 S22 %24
. ] N - , |
\ . e .
Lsax 843 ! "S42  Sus4 .
) Next an eigen decomposition- of'_S_12 is performed to yield orthogonal
. matrices _Il and ‘T of order 2: (-
Sp=RLE -

In the next step new matrices Q and U are found as follows:

Q- = S -3 P! snggr_"s = (ay) for 3= 1,2; k= 1,2 , and (49)
-,' ! » «5 st . -.5 ) . . : ’
u = 8 R' S, P T = (uy) for 3 = 1,23 k = 1,2. (50)-
| . Y ’ . ~
N R \
A ' ’




li

, . ady
o Finally, we solve the quartic trigonometric equation

1 hacota v + h3cot3 v + hzcotzy\f hlcot v+ h =20, (51)
3‘ .  where ° hh = q31u15 + 935Y17> o (52)
- ' hy = aggQugy - ugp) Fupy (G T ap) * A At 09
: | hy = 3 [agy(uy, = uyy) + upy (dpp = dpp)] ‘, 68

' \ , hy = gy (Ugy = Upp)(8pp = d1p) ™ 4 d12¥12: (33)
; T A, oo

There will be four solutions of this equation, two of which must be

real. From the largest root of the quartic we f£ind ?min which is then

. L4
uged in the formula for t (Equation 47) to evaluate the null hypotheeie.
Although Eqnatione 46 through 56 may}appear formidable, they are’ .
\ easiiﬁ and quickly solved by standard eompnter programs eeg., msL ?
’ (1979). Most computer {nstallations will have a program for solving 4th
’ degree polynomial equations in a'single variahle, say d. To solve
' Equation 51, let d = cot Vv and use the program to obtain the largest real
root, say p, of - '
i
" . h4d1°+h3d3+'hzd2+h.d+h - 0. - | (57)

Then the correspond.ng root s' of Equacion 51 can be obtained by using
the inverse trignometric funétion to solve. p' -\agccot p. It anuears
that Kristof's (1973) method represents an efficient procedure for

testing if Tey ™ 1.0 under very Iiberal assumptions. A}though the test

Ly

-~ 18 conservative, it is valid in small ssmple applications. It has
performed as well or better than other procedures in Monte carlo ,
studies. Its efficiency is especially pronounced with small sample slzes.

Thus, Kristof's (1973) procedure possesses gome real advantages over

those methods already reviewed. To summarize, the test does not require
- . /
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"4s robust has yet to be determined, however.

-, Jsreakog?s Tast . .,

o,
the parallelism of x, and xz and of y, and y, and permits some

betuéen~test .error correlations. Large samples are not required to ¥

just ify the valldity of the test. Widely-available standard~compﬁter .

programs for solving polynomial equations can be used, to compute the

»

necessaxy ‘test ‘statistid quickly and inexpensively. In addition,

1

Kristof's procedure conveys a tangible benefit to the user., when Xx,,

x5 and y3, yk ‘are not parallel. The - degree ta which Kristof s test

J¥reskog 's maximum likelihood method for estimating the.parsmeters of

and testing hypotheses about cogariance structures provides a very

" flexible approach | for investigating the equivalence of measures. As can

be gleaned from Table 3 the method is based upon the large sample
properties of maxi@um 1ikelihood estimators and likelihood ratio tests
subject to classlcal test theory assumptions snd the mdltinormallty of .
the obserration vector (xl,A Xgr J3» ya). ~Parenchetlcélly, we R
menticn that the gemeral ACOVS or’ COFAMM models can be defined so as to
relax the classgical a\ssumption of, uncorrelated errors. However, more
replicate measures on % and y sill be required in order to identify the
model., 1t is obvious from Table 3 that JBreskog 8 method compares

£avorably witb the procedure of Kristof (1973) discussed in the last

»

‘section. However, as will be shown Below Jéreskog's technique alldws

~
greater flexibility, because it allowe one to test a variety of

restrictions;end hypotheses. R -

-

krmewwmwoﬁmurwﬁijmimu@md@&ﬁmﬂh1n

‘ A N i o
testing two-different null hypotheses within the frameWorE"ei\goreskog's

- . ) - X:j\\\<;\

B




1 ! M .

ACOVS model. Tne'firgt\is that ryy = 1.0 which we now write as Hgp A \ . .

ku

(for equivalence)- The second null is that for each variable the .half

tests meet the assumptions of equality of unite—of measurement and .
; - standard errors for parallel tests. Tnus Hy symbollizes the null
hypothesis that xl and x, are parallel and that’ y3 and ¥y @re |

also parallel. 0f course, Jorqskog s method is completely geperal so

&
-

that an’interested i westigator could test assumptions of ‘the tau N a
'equivalence, or of the parallelism of four observed variables, 1i.e., -
Wilks (1946) test, etc. Although in this gection equality constraints on
- the means or origins of ‘the measures will not be considered, the reader
should appreciate that Jéreskog's general COFAMM model readily permits
tests about the structuriag of the means t{as was illustrated in a
1 previous section?. There 18 typically little interest in differences in
means between tésts,. 80 this issue Wwill not be pursued hete. After ’
considering the computational formulas, we shall describe -how two
"alternative 5i?ts of HE and HP may be iormulated and evaluated. Q
Jéreskog's (1970) general method for analyzing covariance str&étures . .
assumes_that the population cdverianégfmatxix S Xy has the form given
k in Equation.(Zl) which is reproduced here for the reader's convenience:
- S . S e _ BEN
‘-S-xy - B'+5 e . o (29)
A cova;iance matrix of this’étructure is produced when the observed
variables ate structured aequuation 25 (reproduced here):

. . -
e ., ¢ P~

x=o+Btée . (25)

- . Three kinds of parameters may be contained in the parameter matrices B, S

A
o
@

XY? and §-ee: (1) fixed parameters that are‘assigned a prio:i'

values, (ii) constrained parameters that are unknown, but equal to one or

s - .
\ . , ) /-
. ;
.
, . .
.
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more other patameters,'and (1i1) free parameters that are.unknpwn and

f
unconstfained. N . v : . w .
@ 5 . 4
The problem is to find estimates of the constrained and free

parameters which maximize the likelihood of the sample values given a

nodel of the form of Equation 21. For most applications simple analytic
solutions do not exist, so J6reskog (1970) uses the numerical method of
pavidon (1959) and Fletcher and Powell (1963) to maximize the likelihood
functions Jdreskog argues that compared with variants of the v
Newton—Raghson technique, this is an efficient” procedure which makes use
of the derivatives of the 1likelihood function and the inverse of the

information.matrix- Actually,'JBreskog (1970) finds it more convenient

fo minimize a‘function 0,'which is equivalent to maximizing the logarithm

of the likelihood ﬁunctioﬁ L:

o=108 |E |+ er 8, 8 '1)-iog|§xy-J, (58)

where § ycontains the maximum likelihdod estimates of sjk estimdted'under

the model specified by Equation 21 and J is the number of observed

)

ee

variables. 01is a function of the independent elements in B, S X’ and § __ -

In largé samples, N-1 times the minimum value of O 1is distributed as chi

square and may be’ used to test the goodness of fit of the model. In .
,,/

.addition approximate:standard errors may be obtained for each estimated )
parameter from the inveree of.the information matrix computed at the
minimum of'b. ' : | . |

Hypotheses gre tested in this approach by the likelihood ratio 7 (:;\\
technique. .The ACOVSAGor COFAMM programs compute a chl square)value
-forleach specified:model against the most general‘alternative, that

°§-xy 1s any positive definite matrix:
. \ . 3

N | o ‘iv—'23 111

<3




I‘; (S Rj ' N ‘. 'f" )
N - f 59) -
J% = =2 1n - ’ ‘ (
L (Sp)
.where L (S R) represents 'the likelihood. under a given specification of . -

fixed, free and constrained parameters (Restrictea model), and L(§_F)
his the likelihood under the assumption that §-xy is any positive
definite mat rix tgpll'model)- According to JBreskog (1970) it is
possible to‘test any given model,asay MRl,‘against a more general
,alternative, say, MR by estimating and testing each one separately
' (against the most general alternative that S xy is any p.d. matrix) and
comparing their 7£2 goodness of fit values. The difference in chi
square values 1is. aysymptotically chi square distributed with degrees of

f reedom equal to the corresponding differehce ‘in degrees of freedom

. ," between the two models! '
2 ' . ! .
*5 yn N (O, ORZ) . ({&)\
with ‘ .
df, = df - df, . (61) *
D R2 _ Rl . .

.
s

. In general, the number of degrees of fr‘éedom on which any chi square t%;t
-

s 7 P .
e ’ is basged equals'tire difference in théniunber of parameters estimated
under the full and restric.ted models. s V / .
' v LS : B
with this introduc‘tion to JBreskog s method we' can now explicate the = RN
hypotheses (models) of interest in investigations seekit&[ to determine ' [
/ oo
. tite equivalence of measuresa. Following Joreskog (1971) we suggest four f / N
- N i .
models which could be tested: / . K :
2 2 2 2 |
M. : b, = b,, by =Db,, s =g s 8 = g y Ty =10 1
1 1 273 '4 ey 2 ey /ea | ‘
N ' !
- . .
\ - . . M / |
VA '




1 g» B3 = b

M, : b, = b

My r‘gx- 1.0 )

M, : .sixy is any p.d. matrix of rank 2 with the elements of B, §_x)-,,~and

-S—ee all free. .

Each of these four models is testad Against the most general model:
,; M5 : -§-xy is*any p d. matrix.

This series of tests is illustrataed in the upper portion of Table 4 where .
the numbers of parameters and degrees of freedom are indicated. To test

the hypothesis that tpe two tests X and y are equiva,lent (HE rXY = 1.0)

we could consider the goodness of fit of ﬁer Models 1 or 3- HP’ the

%

-

¥

. . . ‘ IS
. Insert Table 4 about here
~o : ’ ' . -
. ‘ N null hypothesis that Xq» xz and Y5 Yy are parallel, ‘codld be tested by -

Model 2. ‘However, JBrekok (1974) maintains that "the value of %should

be” intexpreted very cautiously."' He suggests that it 1is more informative

~

to test the reasonableness of any restriction by fitting two different , ~

. models, one of which contains the restriction, the other of which does

-~ +

" not. "The differences between % values matter rather than the 7.

values themselves” (Jdreskog, 1974).,
1

In the lower portion of Table! 4 are presented four ‘model comparisons

~

which yield tests of H " and HP ,The differences in chi square values. ‘ ’ .
x L e X
for the indicated models yeild tests of the follgwing null hypotheses. o
Ve
Ml V. Mzz . Given xl?- Xy and Y3 Y4 ar,é -parallel test if x and y are

i . congeneric.

o s - . . . . . .
5 , . o
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‘M, ve M, Givenjxl, xb and Ygr Yy are congenerie¢; test if x and y are

3 4°
o congeneric. = L
< ' t . §
M3 Ve le ‘Givep X and y areécongeneéic, test if Xys Xy and ys,-z4 are
perailel.’ ) '

-

,M4 Ve MZ: Given x and y are not congeneric, test-if Xy Xy and Ygs ¥, are
\\\ . parallel. L

' . ¢ Ed \
(Of course other possibilities exist, e.g. taw equivalence, and thee can

v

\ be tested easily by the ACOVS or CO{AMM programs.)_

\}\ We observegthat the test‘of the M1 ve M, comparisonyis identical

ixf to Lord's (1957) test. They differ only 4 computing algorithms. The
compaxison of»models 3 and 4 is comparable to Kristof's (1973) Case iii
which was'presented in th:/Zrior section- Although the underlying
assumptions and'null and alternative hypotheses are'(roughly) the same,

; Kristof's and Jdreskog s test statistics differ considerably.» In Y

simulation experiments in which they have been compared, Kristof's method

I
has been generally‘more efficient in small samples.’ When N exceeds 200,

‘however: Joreskogis procedure demonstrates éreater power. The
availability and ease of use of Jﬁreskog's COFAMM program are certainly
advantages of this technique. However;.serious quest fons about the
method's sensitivit; to departures from normality remain. kecently‘ . .
problems have been found with the DavidOn-Fletchet4Powei1.algorithm which
COF AMM uses (Lee & Jennrich, 1979). Thus, it seems premature.at this
poeint to recommend ACOVS/COFAMM as the optimal large-scale procedure.

Before closing this discussion, it is worth noting that Jéreskog's

method affords-the capability of testing which test model is appropriate

~

[y
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onr Xy and X0 ‘and for Y3 and Yo Identical tests of paréllelism
c'an be constructed using the methods of Wilks (1946), Votaw (1948), and
J¥reskog (1979, 1971). These'al} produce » 1ikelihdod ratio tests, but

they differ in\csmputational methods. The -ease and flexibility Of
\

Jéreskog's procfdure would seem to recommend it for testing assumptions
T }
about test scorh models, e.g., wWhether a set of measurements conforms to
| . . ' N
the assumptions of congeneric, essentially tau equivalent, or parallel

-

tEStSc . s .
N \

In concluding this description of the ACOVS method we point Su; that
’ ‘Jf Y N -

it will yield a ML estimate of Tyy when~HE 18 nbt tenable and that it

easily accommodates.the analysis of seyeral sets pf congenerié tests

-t . t

T qﬁﬁ'g'” Xy ¥ z) each of which has several replications (e.g, Xqs X9

‘x3?'y4,;y5, Zea 29 28). The null hypothesis of interest in
this situation'is' H.LB: r = f’ =r = 1.0, inally, it is
} o' TxyT Txz T vz :

interdsting to note that ACOVS or COFAMM can be used to test, the

SO ' . hypothesis that the correlation for attenuation equals l 0 in situations
where replicate meéasurement s on X and y are not ayailable if- the
( .

-

reliabilities or stsndard errors of x and y are known (ef. 4Equation 3)

This will be considered in the next section.

Procedures Using Error Variances

~

Koopmans-Tintner Method

- | (’ The credit for dcveloping the first statistical procedure for testing é
the hypothesis'that trug'scores have a perfect linear relation by uging :
N information about the covariance structure‘of the\errors of measurement
must be'shared by many statisticians. I attribute the method primarily

to Koopmans (1937) and T;ntnér (1945, 1946, 1950) because” of their




~ . . 4

concern for significsnce testing and research-applicétioni Building\

.

¢ primarily on the work of Rhodes (1927) and van Uven (1930), Koopmans

L (1937) proved the maximum likelihood properties of van Uven's (1930)

Pl

weighted regression estimates of the parameters of a linear functional
relation and derived approximate sampling distributions for the
. ! : I}
.‘coefficients- This work was extended by Tintner (1945 1946, 1950), who
- 1, s .
- J /

-2 . used a result of Hsu (1941), to derive an approximate asymptotic test of - /

_ equivalence- He applied this method, whiqh in the field ‘of econometrics
Ee - [y . . ‘ . ot
is now commonly.referred to as the method of weighted regression, to ) ' WO

T problems‘of multicollinearity and homogeneous ecdnomic functions. As i
%

o §

will be seen, t b methodLshares certain fdentities with several @ -
» 4 2 . K . . \‘Q'

multivariate techniques, most ﬁotably factor analysis and canonical

53

%

correlation. Although' none of its developers were concerned with the

.

.~ problem of equivalence of measures as defineq in this chapter, the

> LA R

weighted regression method permits a test of the hypothesis that two. or ) \

, more scales differ only in means\\units of measurement, and standard s
. RS - .
"\ . - .
errors of measurement. oL Co A . -

' ’

To explicate the procedure, we first form th> covariance matrix of

the total sBcores x and ¥, §-xy’ from the entries shown in Equation 33: . .
. A‘,,q S

s 8. : . . -
XX Xy N )
~ 8 _ . 0= ' : ) \ 62
‘. - Xy , . ) (62) .
3 ) ’ /
f -~ s'yx Syy 2. [ ) -~ \

«.The covariance structure of the measurement errors for the total test
: /

scores given in Equations 1 and 2 is defined as ., _\,
K 8 T Y
- e e e e .
. > X . Xy .

X X < " .
E3 . , ' . o (6.3) . i

e ST - R LU ) I




) .
‘which explicitly permits correlated errors. For ease of presentation the

IS
WL .o . 1

method 1is illustrated for the Ease’where;there are only two (total) -

scales. The matrix formulatién is completely general, however, and holds
.““‘for any number of tests. Assuming that an estimate of gsxy is available .
and that__S__ee is known, Equation 7 may be estimateu by solving'fhe

T
B

two-mat rix eigenproblenm Qéf.~Bock, 1975): '
3 ~ _ \ ]
\ . A A . c -
S, " 48 JE=0- (64)

The elements of the eigenvector é.- (gl,'éz) corresponding to the

’ . A ’
smallest root..u1 are LS/ML estimators of

-

o g, t=c+g, X _— s AD

’

~ The intercept is cqaputed by inserting mean values for X and Y in

t .

L}

Equation 7 and solving for c: . B ;

A A —'- — ' . .
. c = gl Y + g.z X . ¢« (65)
‘Under the null hyp0thesis (of equivalence) the quantity (N—l)u
approximately distributed as chi square with N-2 degrees of freedom. ’
Anderson {1948) 7Zoved that the quantity’, (u N)/2N followed the unit

normalvdistribution for large N. Approximations using the F distribution

have.been'proposed by various authors as well. When the values of either

~

of these test statistics exceeds the tabled values for the prespetified

.- alpha level’and appropriate degrees of freedom, the hypothesis that Y and Can E

X are equivalent is rejected.. ' _ . - : ;f

}~ . . The weighted regression £gthod assumes that the population value of S ‘ ‘4%; -:
. ce v 18 used in the’preceding calculations. Koopmans'and_Tintner both " ‘;\; VE

argue. that using an éstimate of §-ee will not éreatly affect the

' validity or accuracy of the structural coefficient estimates as long as
N ' Y ' o 3,

the variances of the true scores are much greater than the*error

[4




dispersions, i.e., that the measures have high reliabilities. Malinvaud

»

‘ o (1970) concurs, but cautidns that this and other deductisns apply only to .

the asymptotic distribution of the weighted regression. And, as he . ) )

points out, "[u]nfortunately there seems to exist ne.study of the ~ ~

- Lo

.properties of this regression for finice/samplesaﬁ~(p. 394) 1t is not

o

known'how efficient and rohust this method is relative to those of

*
"y

Kristof Lord, Jﬁreskog pr others. The fl@xibility, generality, and ease

- -~

of.caﬂculacion make this technique potentially attractive. However, much-

5 mote needs,to be 'known about its small sample behavior in comparison to . ;
o, the other methods. ‘
X PN -

_Fuller's Test . S o .. . '@:

~

In a significant contribution to the weighted regressios method, .
A s” : 5] .’ " ’ T ’
cy Fuller (1980; Warren, White & Fuller, 1974) derived.a significance test

. for the smallest root of the determinantal equation (64) rhat is valid ™

® for. small samples and. modified the equation to improve the efficiency of *

!‘ the estimabors of ‘the functional relation coefficients. The methods ‘
k; devised by Fuller may be used with any number of variables, but, again 3 \J/ )
. for illustrative purpbses we shall consider only twp scales,\x and,y, as '<
. )

v

".ip the preceding section. Fuller assumes that the vector containing the
errors off measurement are independently‘and identically distributed as a

o » . ‘multivariate normal random variable with mean zero and covariance matrix
N . R ’ .

«
e “ .

g ) A
510 . S e The matrix §-sy {8 positive definite and a consistent

B ) e —\A -
estimator of S xy' Finally," an unbiased estimator, §-ee’ of &,

a

* multiple of §_ is available. Fuller (1980) presents formulas for the

case where S ce is kmpwn to bg diagonal (the measurement errors are

’

uncorrelated) and for the general case when S is a positivé

3



q >
, | . .
semidefinite matrix. As described In Warren, White, and Fuller (1974)

t he null hjpothesis given by Equation (8), that the variance of .the

stochastic error in the equation equals 2zero, can be tested for the

]
special case of uncorrelated errors as. follows: "

L]

Under the stated conditions and the null hypothesis that sf2 = 0,

. ) )
the distri%utfon.of the smiiigét root of
L ST S ,‘o . (68)

I3

can be approbimated by Snedeqor 8 F

¥ | ' T 3 - .
. S ( 1 (67

with N~2 and d degrees of freedom where A - ' .

3 ) (é' é. ee é)z
. . ' ~ 2. 2 :
. ‘ - ¢ (N- 1) gz Se -

When the obtained F’EE9LEd5 the critical ?alue of F for N-2 and d degrees

-

of freedom, the hypothesis of equivalence or perfect linéar relation is
rqjected. |

. The consistency and small sample properties of Fuller's estimators

~
)

also hold for those of Koopmans and Tintner under the same assumptions.
Fuller's test statistic should be better behaved than Tintner's
,apprcximations. Howeﬁer, the performance of these tests when the

assumptions of normality and linearity are violated is unknown. The

. . ®
power of the_weighted regression-methods relative to that of Kristof's
"and J¥reskogs tests has not been determined either. ' )

- Jﬁreskog's Modei

The general form of Joreskog s method ‘has been discussed extensively

-

J.
in preceding sections. Thus, it will be considered only briefly ‘here.

In J8reskog s‘(19Z3) LISREL- (LInear Structural RElations) formulation it

a

4

' . - ) =31 11§

|

©




is'possible to test the hyppthesisvthat sf2 =~ 0 in terms of the
difference between two model chi squares. The‘path[model is illustrated
in Figure 3. This test has all of the characteristics described for the -

ACOVS test above and likewlse depends upon assumptions of multivariate

, . Insert Figure 3 about here }}i 2

4

normality and largé sample size (Jdreskog & Sérbom, 19785. This LISREL

test would be egpeeted to perform very similarly to the ACOVS/COFAMM

i-‘ “test. fhis is the final.method which is based on information about the
méasurement error covariance structure to be considered. Now the only '
method to be Considered which uses independent informafion'about the

v . xfeli_abilities' of x‘ and }: will .be reviewed. ‘

:‘:; [ 4 .
Procedures Using Reliabilities

Fuller-Hidiroglou Test

Fuller and Hidiroglou (1978) developed a model which uses Information

.

about the reliabilities of x and y to estimate the measurement error

(2]

= variances. Once the error vari7pce estimates are obtained, the .

s

hypofhesis testing procedure cYosely parallels Fuller{s'(1980) met hod )

o

that was)presented in an earl er section. However, more stingent

assumptions are-reqyired in/the present case- In addition to assumptions
about the normality - of th& error distributions, Fuller and Hidrog ou
(1978) assume that the prue scores, X and Y, are normal independent
random variables with/mean zero. Although this assumption will not be

tenable in some eduacational applications, it is not: an unreasonable

assumption for.mucn of the research on educational change.
kY o s




O - \ ./.v - )
- First, we define k__ and k ; as the ratioc of error variance to
- yy xx ) £~

total varfance

' k= 9%y, and f (69
. . yy 2 .
) yy \ <
[ Y U 2 )
. : ®s_ .
4 exgx 3
k- - / - (70)
_ —
XX

Thén,"the,geliabilities of the obséryed vdriabl®ts may be written as

T,y = 10 =k, and | L (71)
, txx = 1.0 - kki . : - (72)

Given i~dependent estimates of the reliabilities, EQuationé 71 and 72 can

be used to estfﬁate'kyy'and kkx' Define K as a matrix of. order two

with kyy and kxx_on the Qiag?nal. Let D be a diagonal matrix with

the standard deviations of x and y on t?e principal,diagonal. ihe

smallest root of thé determinantal equation

ol A A A ca
S’ =u,DKD

may be used to test *he‘h&pothesis of equivélence. if Gl'is not
' f

significantly different from one, the hypothesis o(\sggitiliggg is

=0 . . : (75)

accepteds Since the limiting distribution of u1 is the unit normal,

the qggn:ity«* (u - 1) may be compared with the tabular

values of the unit normal diStribution to test the hypothesis (Fuller &.
Hidiroglou, 1978, p. 104).

This cou;ludés-the-review of methods for determining whetheé a linear

functional relation exists or that méasdreé dre equivalent. "It is. easy

—

-




-

*to see how they,could;be used to good advantage inm many studies of

-

eduwational change. The optimal méthod will be a fuﬂction of the kinds 5

of data availabisiand the properties of the tests and estimates. The

results obtained in this chapter .ought to assist researchers in ¢hoosing

the best*étﬂt1§tical'LFR method for their needs.

v
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'FOOTNQTES
11n this chapter a prime indicates vector and matrix transposition.

ZThe determinant of a 2x2 matrix is equal to the product of the
diagnoal- elements minus the product of the off-diagnoal elements.
N

3In»this quota;ion and all other%ﬁcited, symbols have been changed
to conform to the notational conventions used in this paper.

4The most %ecent version of Jdreskog's program for the analysis of

' covariance structures COnfirmatory Factor Analysis with Model Modification

(COFAMM) is marketed through International Educational Resources, Inc.,
Box A’ 3650, Chicago, Illinois 60690.
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. Propensity Distributions
Test Score . First Two.Moments Higher Moments

of

\

L v
Comparison of Test Score Models?

—

&

. Table 'l

Experimental Linear
Independence Experimental

Model Independence
Strictly - - .
Equivalent Equal " Equal Yes Yes®

“Parallel” Equal Unequal . No Yes
. \ &
T- equivalent ~ , Unequal ~ - Unequal No - Yes
Essentially'//f”/ ’

T- equivaient Unequal A Unequél ' No Yes
Congeneric Unequal Unequal - No Yes

' See Lowed and Novick (1968, Ch. 2) for more information

b - . A
True scores siay differ only by an additive constant
AN 4 .

c , - .-
True scores may differ only by an additive constant and a scaling factor
\ .

¢

(O
True Error

Observed Intercor- E
relations Validities

~ 3
Qcores Varianceg Means

Y
g

- 3

Edqal 7 Equaib

Equal

Equal Equal - Equal

£

Equal-  Unequal

Unequalb Unequal

12pqualc Unequal

Equal

4

Unequal

Unequal

Equal
Equal
Unequaf

+

Unequal

Unequal

Equai

Equal

Unequal

Unequal,

Unequal

s




Table 2

Score Schemaa

. Test )
x ! ' y

' Repiiéation o _ Replication
Individual (1) - (2) Sum . (3) (4) Sum
1 *11 X2 ¥ Y13 Y14 yie i
2 - %21 X22 X2. ¥23 Yoo, Yo
° . “ . % % . N
1 X1 - Xg2 X, * Yi3 Yo Vi
* , S
E N Xx1 X2 - VExe . YN . Y% YN
( e . . ,
Mean % i . K. ¥.3 ¥.4 V...
Ll ° “ - : : .

aAdapted from McNemar (1958, p. 259).
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Table 3 ) .

Comparison of Assumpticns’and Hypothesas of Eight Methods for Determining Equivalence
b R X S Test?
- T . *
&) &) ]
5 2 3 &
3 @ &7 -
g S iy & p g -
' y’ 1 g S8 S .53 % g2
. . ] Ps‘_g_ L ' « @
- ® v v @ @
| S 3ES E EE L2
Assumption ' 5 £& 2 3 2 28
7 ) : P / ¥ .
large sample test _ ® 7:’ N N Y ¥ N N Y
X} and x2 same origins MH Y Y Y Y Y N N/H
X and xz same %pits of measurement - - / H Y Y Y Y ¥ ‘N, N/H
?xl'and X9 same std error of measurement "UH Y Y Y Y Y N N/H
y3 and y, same origins H.Y Y*Y Y Y N NMH
v ' i ] .
y3 and y, same/unifé of measurement / H ‘ Y Y Y Y v N F/H
y3 and y, same std error of measurement H'Y Y Y Y Y N NH
£ ) [ / . ' ‘
Xy, X3, ¥, same origins A » H Y ¥ X N N N NH
X1s X25 V3 and y, same units of measurement H ¥ Y N N N N N/H

i ’ Yy

' xl, Xy, ¥4 and y, Same std errorfof measurement H Y N N N N N NH

x and y same reliabilities L H Y N N N N N WH
rxi.ﬁl.O | - H-H H H H H H H
E(egep) = 0, Elegey) = 0 o Yy Y Y Y Y Y Y WH
- ElesX) = ElegY) = 0 ) ' Y Y Y Y Y Y Y Y/E
E(ereq) = £lee,) = E(eqes) = E(ezez,) =0 Y Y Y ¥ .Y N N Y/H
Eep) = Ee) = Eley) = E(e,) =0 .Y Y Y Y Y'Y N ¥
X1s X2 y3 and . ¥4 multivariate normal ' Y N N N Y N N Y
e1, €3, €3 and e normally distributed N Y Y .N N Y Y ~ N
e1e3, eleh, ezeq and’ egey bivariate normal * N iN N N N Y Y N
_ejeq and ee, same joint distrznuulons, ‘NN N N N Y- X N
'e2e3 and eje, “same joint distributzcﬂg " N N N N N Y N N
Easily generalized to three or: morgktests (%, ¥, ”
Zieos) Y Y N N N Y
xR and 'y bivnriate normal distribuﬁionx . N N’'N Y 'Y \N N N
v The lecters mlke the following designations- ‘Y - Yes, the assumption s reqﬁired

O n‘ienq, :he assumption is not required H Hypothesis, the lssumption is tested as

A3z




S~ - ) . - ' Table

: - . 4 i e Ce . -

Tests of Equival®€nce Using ACOVS

: » / - )
N ) .Number of ' * Number ,of
.  Restricted Model = Parameters Full Model  ° Parameters
My 4 . 10
| My - ? 5 5 M5 .10
i; . 3 . . ) - ‘
g M, 8 Mg 10

o

SRR ¥ | 9 v, - 10

Mg o, \10 --Not tested-=-

7
af fo‘rxg
6
5
, "
1

1
s
4
4
o
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.
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.




Figure 1 . g . ', . .

-

-

Path Model with Twp Sets of Congeneric Tests®

. 1 .t “
e‘z——*—i‘. K
aAd_apt:ed from Jerskog (1974), Figure 3.
- . ' v *
Figure 2 . .o o
-Path Model with Four Congeneric Testsa
-
4adapted from Jreskog (1974), Figure 1.

Figure 3 " Y
Path Model for Correlation Corrected for Attenuation ' ,f
, el 1, =l.0 ‘ o
e > % fe— (D= 5(¥) y —
X, S N/ : b4 b
: i > - . ks
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| CHAPTER V \ -
i SOME- ANALYTIC RESULTS ‘FORa'PARAltiETEE{S“AFFEQ}‘ING BIAS IN
) GOODNESS OF *IT AND SAMPLING DISTRIBUTION STATISTICS . |
imaonucnon
?’ ()‘ The developmpnts in the preceeding ;haptqrs suggest‘that the‘ o f%
| paramétefs of.tﬁe bbserved-séore distri?u;ions are functions of the }
s « ' parameters of the létent-ﬁgriable-distributions. This 1s indeed the ' t ;E
case. We c;n write gxpfessiops for b', R?'f,'and sefz iﬁ terms of ’
,.E'and the>gap2}a;ibn variances and covariances of the latent (tru% and
' eygof) variablgs.‘ In adqition, for'a fixed preselected samplevsiz;.(N) o

{
the expected values of § bb and §-b'b' » the covariance matrices of b

r _énd.g', can be d9{ived in terms of the,sﬁrqctural parameters. We pféseﬁt

thgée results in this chapter and compare R2' with RZ, se'? with sg2, and °

S prpr with,g.bg- The comparisons enable us to draw conclusions™}
concerning the parameters affectihg-bias in the observed-score

statistics. We describe the kinds of data and conditions which are

likely to lead to incorrect inferences concerning the determinants of .

trye change'from!observéd-score regressions. . : . .
These results mean thag if an investigator had h§potheses or
kndwiedge abouf the sttucturgi parameters, ;hen he or she could determine
N the dorr%sponding'?efgmeter-ﬁalueé for the observed-score population. By
comparing'the;e two sets of parameters the researcher couid ascertain the
| degrae'to which iuférepces about true change based on analyses 6f (even_

- Yery large) sampléS'of observed scores could be expected to be

incorrect. However, most investigééoxs are not able to state a priori

the population parame:gﬁ values of the true and error distribution

- -

5
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LY -~ N

because of a lack of previous research or because the mathematical

'f for@alization of the vezbal theory can not be accompliahed precisely.

° t

Even hough the exact values of the latent variable parameters are not

«

€

available in moat circums:ancee, a rapge of likely or theoretically

o *

Gy possible values usually can be preapecified. -For these caaes, sets of

\
poasible latent atructure parameter values could be used to genarate sets

df posaible obaerved-acore outcomes. Ihese cbuld be evaluated‘and the

£ ' potential for errors of 1nfereucea due to errors of measuremenq

aéseseed. In the next chapter we use the results of this chapter to
3 . . - | b3
devise an aléorithm which takes as input the parameter values ?f the

Btructural relations anong the latent variates as apecifiedxby\the

researcher and outputg the expected values of.the observed-score
\- - N -

regression parameters for a given sample size.

EXPRESSIONS EOR THE TRUE-SCORE-PARAMETERS DR

Before the expressions for the observed-score parameters can be . P

written in terms.of the latent=v le parameters, it is necessary to T

derive the covariamce structure of the latent variables. Firsf, recall e

the single-equation structural model specifying the true poat*eat (Y) ag . ' L

s function of the structural regression «;oafficients (bo,' b), the vector

+of true causal variablea X, and.thg stochastic error component (e) ﬁ
. - ,

4 4

given in Chapter II as . - ' ..

- Ymbg+btX+e ° . (1)
. — — . . ~—
(where the aupérsc;ipt t represents vector or matrix tranap‘&aicidn). The
equatiohs of| the simplified measurement model are -also reproduced for the

reader's convenience:

», . . .



£=X+u - | ’ (2)

y=Y+v ' ' . - (3)
Hcv the covariance .structure of the latent variables can be given.

For the true gcores we have the covariance matrix of the Xj

-
A%

: | o2 \.
Sxx 8X.%3 v - (symmetric)

‘e Ched
. »
s

5% 3 - ) éxk 2

*

and the covariances of the true X, with the true Y

- - -

BYX1
BYXa

£3 9.0

gad -

The vector of structural regression cogfficiénts can also be written

L 1
as a 1inear function of the true varlance and covarianes as demonstrated

~
»

, in Chapter IY?

. b=

‘and then the intercept coefficient is”

vy

by = T - bt E . ' )

where the bars &asign&te'means or expected values. Since Y is a weighted

lipear function of X and e, Lhe variance of Y can be expressed as a

)

;ahted linear bombina:ion‘of the variances and covariances of the X j

sud ¢, where we moke explicit the usual aasumpt;oq that E(Xe) = 0:
Q\ - ’ .

ot = Hayp+o? = FSmbt s’




Equations 4 through 8 may be summarized in the form of the

P

»,pair&ﬁioned covariance matrix for Y, X as follows: ‘ &
2 ! t T t 2 't
: N
v“y , E.Y% bSyxb +s, .\ 2.xx.§
R B N I TR ko -
I
Byx "1 Exx - Sxx 2 :\ Sxx

2
8, for True Change

The first index of the magnitude of the systematic relation between Y

and X, the square of ‘the standard error of estimate (sez), can be

expressed in terms of the structural regression coefficients and the true
(—-‘ - ‘i . . K B .
variances and covariances. If we let Y represent the systematic or

predictable part of Y, then

§ = b, + BX — >(10)
Note that the étructural equation model adopted~§n this baper (Equation

1) specified that Y#Yin the population. Thus, e, defihed as
e = Y- (bg+ bX) = ¥-F , (11)

can be taken as a stochastic component .representing the fact that the

3

response process or response generating mechanism is probabilistic in

v

nature. ‘Altérnatively e can be concelved as a lack of complete ﬁodel
) s
specification as follows. We take e to ee.a linear combination of

addit;loﬁal prédicto:s of Y ) 2

-

e = xk*.l + XX + XP ) ' ‘ . ) ‘ » ’ (12)

where regression weights are ignored and impose the restriction that

E(xixj)-dfor,i-; . euk, §mk+1.e.p. Thene will

0y

—
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function as a random variable in the structural model. The variance of e

(the square of the sﬁandéra“error of estimate) is
. * \“
8¢2 = E(ee) = E[J¥ = (bo + BEX)TE Y - (by + BEXIT ] . (13)

. ~ N
E%aluating the right-hand member leads to an expression in which se2

is given as a variance df'a difference in termé‘oﬁ itsAcdmponénts:

v

R se? = oy? + B xx b= 2btsyx . . (14)

. J
2 AN
R® for .True Change

The second index of the deésee of systematic.rélation between Y and X

is chedcoeffiéient of multiple determination-or squared multiple

, correlation. It is deflned as the ratio of explained variance to ;btal

\

variance: - : : K

t ‘ "
w2 L RExmb : (15)

o, _ Spp for T'ru‘e‘ Change
-~ For a fixeq'sample‘size the sampling variability of the regression

- coefficlents can be derived for the‘generél case:

”*- & ! E

| Spp = s2 1 syl . | (16)
-~ N

The }1ght member in thi; equation:contains inﬁorpation about the variance
structure of Y and X. Having derived a set of equations which involve
pafamefers that apply to true-score regressibn, wa éan now focus upon the
errors of meaéurement.

) will £e

The variance structure of the predictor measurement errors

’

denoted as




-
o BN |
Sw = | fuwm 8 up” ! /(Sym) , N
. O A ~ /B
"] Buku1 e Buy 2
. 3 ) L B

B / . ‘
‘The variance of the deggndent.variable eféor-of measurement is 8,
' : K : s o

andnfhe'éovariance:téétor of v, u is ~

;

3 V)J'-t = " ( SVUi avu/:z/" e o o sVUk) . ( 18)
/,‘ N ) ’ ‘//// h :I
The results ara/amalgamated ipto a partitioned matrix, §-vu= ;
p- . s -
vy
- . 2 n . s
Syu = Suyv 8 u . (symmetriF) , (17)
- 8 : . s - > 8 X 2
A ukv Ugul Tve Uk

EXPRESSIONS FOR THE OBSERVED-SCORE PARAMETERS |

< . 1

In deriving.the covariance structur
' e

é of the observed %ariables‘it is

necesséry;?o,impose~certain resﬁriCtions usually associated with

classical test theory (Lord‘& Novick, 1968), viz., that the errors of

measurement are uncorrelated with the true scores, that the expected

values of the measurement errors are idehtically zero, and (as a

#

_consequence of tbe-preéédiqg)'that the expected valués of the observed
<

' A - (.
variables equal the expected val&Ts of the corresponding true scores.
Symbolically we write# ,5 . . . .
T w3 . , v

EQu¥) = E(X V) = 0, E(R uf) m 0, and E(YV) = 0 . (20)

\ M - .
~

o .
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E(w) =0 and E(v) =0, and \ @A)
E(x) = E(X) and E(y) = E(Y) | . - (22)
Thé reader should note that t:he errors éf“’measurement 'are pei‘mi;:t:ed

to be correlat:ed e.g., E(_ v) f 0, since in many analyses of change it:

' '."'.is quit:e reasonable to expect pretest and ‘posttest e©rrors to be

correlated. Now we pregent the partitioned covariance matrix of the

observed y and x values:

T | .t .
. 4 R £ ,
S - ~—- -y -=-- - L@y
- yx ’ ) : ,
‘ .8 . S
.

Since the true scores and errors of measurement are uncorrelated S
1s,thé sum of §'Yx and\é vu? and using previous results the .

covariance structure of the observed' scores can be written strictly in
y

N

terms of .the structural, parameters: ' »
-~ - : T T '. . -
. ) 2 2 t t
) ¢
Bp-t B, .. Byx t Ay R
- ' .
2yx :
- 2 vx T s vu o 2xx t 5 uu .
N ' » ! J -
t 2 2 Tt e ] ‘
- DS xx b+ sy® + 8, PSxx+ 8w (24)

- ey e a—. —

Sxxb + 8 vyu Sxx + .s_‘ou

The vector of observed-score regression coefficients defined as

(25)




3

e

can be expressed in terms of the structural parameters:

b - (8 xx + §_ uu)m1 (8 ¥x ""',3_ u)
- [(EXX +§ wu) ™t Syxb+ (§. XX "" _siﬂuu);l E_a vu } . . ?’3(25).'
S ' . - : y
If we iet
” LSy ¥ S e m e (S ¥ S e b @D

~ then

b' = Lb + o . (28)

Thus, the vector of observed-score regression coefficients is seen to be a
weighted 1lipear combination of the true-score regression vector and the ' A -

true, and-error covariances. The - observed intercept then becomes
%]

.
4

b'g = by + (b-bDE . " (29) °

w4

'Be'2 for Observed Change

i The'goodnesg of flﬁ indices of the observed-score regression can also be

L

written in €erms of the structural parameters. ' The first index of fit, the

4

" TVariance of -the obséryeé‘residﬁal» caﬁ-be derived as_

se'? = E[{y-(b'g + b'x)} t{y-(b'o + b'®)T ]

= E[I(X+Vv) - (b'g+D'E (X+u)Ft WY+ v) - (b'g+b'EE+ W} ]

= sy2 + 8,2 + B'ES xx b+ 't S yub' - 2b't (8 yx + 5 vu) . (30)
. A - : ‘
Equat.3on 28 can be employed to express g_e,z as a function of the

parameters of the latent variable’distributions: -~
& . el - . -
ser? =ay? + el LB+ S LBt F LEY DS LbY D

-2 [((b+®E (s yx sy ] . on

o




. .
R? for Observed Change

Second,‘thé~coeff1cient of multiple'determinatibn is given by’

B2 o't S . b' /sg2 = B'E (Sgx+ S awb /(ey? + sy?). (32)
Sy 2 2 S qu/l v

. :
Using equation 28 the‘coefficient of multiple determination of the
. obsg@ved varfébles.mﬁy;be written exclusively in terms of ;he,latent . @

variable parameters as

je
o
+
18,
jen
o
o
+
18,
jen
]
c
it
[~

= (bELtS xx Lb + b'L'S yy

+‘31F.1_-."§xx.m_ +DBELE S yym +mE Sxxm + ot S ym/ (s Y™ 842 . (33)
' : %
S b,b,vfor Observed Change

‘Information about the joint sampling distribution of the

observed-score regression coefficients is contained in
) Spp - ser? - _;. . (Em{"'iuu)-l ' (34)

| | o
Clearly Equation 31 can be used to write S prpr @8 8 function of the

latent variable parameters:

S p'p'™

2 [+ (Eyx )] - ExFSw - . |

PARAMETERS AFFECTING BIAS IN OBSERVED-SCORE REGRESSION STA&ISTICS
~ Thus far, expressibns for tHe true-score regression pérameters (%g .
2,

sez,«Rz, and S bb) and thé ohgerved-scﬁre regression parameters (b',

\j
R2 » and S b'b') have been derived exclusively in terms of the
pargmeters of ‘the joint distr*butions of the true scores, X and Y. In

the following eections, we compare the parametric expressions for pairs of




.observedhscore residusl will exceed the true-score residuﬁl when sv

A
“

L+

4

correeponding true—score and observed-score regression gtatistics. This

' progess enabﬁes us to state some new analxtic results demonstrating how

the blas the in observed-score regression -estimators is affected by the

distributions of,the true and error components of the observed séores.

In mauy cases, however, simple general statements cannot be made without

making strong assumptions because of the mathematical complexities. Even

the gener’al expressions provide 1nsights_into the b1asing effects of

errors of measurement and enable investigators to estimate.a_griori the

degree of blas that is likely to be found in most studies of change.

Parameters Affecting Bias in Sy

2 . =

To proceed, Equation 14 for se2 and Equation 31 for se,z are

segregated into thfee corresponding units based on thelr comparable

structure. These™are labeled A, B an¢'C for sez and A', B', and C'

L2
for Sgr ¢

2 . 3
8e% .

se'z

A: syz | A's

B: btS xx b 'B':

C: ;ZEFE:YX ) c':

-
where from Equation 27

3Y2 + 3v2
(Lb+mt Syx (Lb+m) + (Lb+mt S yy (Lb+m

-2[(}_.3+é)t (8 yx +8vu) !

‘JV~’
-

L-%_xx+ uu)]'Sxxandm'(S X +8 uw) ™ 8 vu

It can be seen immediately by'comparing A and A' that the

is greater than zero.

2

The discrepancy will increase as the magnitude of

vV-10

A
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avz increases. Since power, or one minus the probability of Type ‘I‘I .’ g
‘ - error, is an inverse function of'-g.e‘,z,' it #s clear that measurement ' B

. ¥

error in the criterion reduces the power of obs®rved-score vis a vis

true-score regression tests. c -

?

-

. . Ass vuiincreas‘,es', C" dedreases and-B' increases relative to C and. o s

B (hoi&in-g"all other terms constant). -~ The effect ‘6f.‘_s_'~“"-'oi1 the ‘ .

. -observed residual depends upon the magnitude of §_ XX and § au relative
. < . 3 v
-t0 8 yye In general, positive covafiances among the criterion and :
: . predictor measurement errors will reduce the bias in %'2 as an " [

ést imator of séz.» Negative covariances, hoivever, will t:‘end' to

increase the bias. It seems impossible ‘to_make.a_genéral st atement about e

H

the ‘absoluteAdifferen.ce between s and se2 as a fumction of s vu'
. T L - - L Y b

: e',
;‘:l'»; A The aéitua”l*degree “of blas will vary with the,siZe and bai:terq of

[ 4

' ‘incorrelatidﬁ among~ the _}g andnthe &. It can be concluded, however, that
. - 'in general bias will increase as s vu decreases. This is probably a A
fortunate result for "j.nvestigations of _change," bgqause‘ error covariances

-

among pre— and post:f'e"'st: measurement s will be positive in most

'

circumstances.

The effect of § uu o8 se,fz is difficult to assess since 1it <

= 0, as

appears in L, m, and B'. When S uu is d‘iagonal and s vu

N . .
. 2 ¢ )
measurement error variances increase, the larger 8g1 will be

relative to sez.’ The effect of S uu O0 the bias in se,A2 can

not be ascertained for the general situation in whiq‘ri the errors of

measurement may be positiwely or negatively ,'interrelated.

Finally, 'evalu'ation of B' and C' reveals that tilp. bias in se.,z

. s

- . -

will be rec_iuced es S XX dominates gﬂuu in § .’ Asg SXX -approaches /




at

" variance of the measurement .errors in the

However, the pattern of

2 2\
suu in value, Bat _approaches se .

relations, among the X and among the u\can nullify this. R .

In summary, the bias in se,z will ikcrease as a function 'oP he .

©

_variables and the »c‘ova'ri‘aﬁces’ of the mégsure en‘t:‘_‘ér‘ro‘rs in the predictor - \/ ‘
varf%bles. egatively correlated criterion and predictor measurement
N B - 9 b -

ependent and indépendent T
errors tdnd to increase the bias. In most analyses of educational
change, easurement error will reduce the power of statistical tests,
decreasf the precision of parameter eétimation, and increase the : )

probability of inferential errors of the second kind.
. .

g
<
. g
Parameters Affecting Bias in R e
. Reference to Equations 15 and 33 indicate that the _following
segmentation can be made: ) ¥
'” R w . &2 :
D R ’ . - x A . ~ . *&‘ﬂ? _|
A:  1/(sy?) A': 1/(sy? + sy2) ) .
B: b'S gxx b, B': DPLPS xx Lb+D'LS yLb
tofSxxLb+mfS ywlbd " w

+afS xxm+ oS ym
Z2ygu?l

-~

Iuspection of A' indicates théc errors of medsurement in the . : '.,n
criterion variable negatively;ﬁfés the estimation of the squared multiple

cgzrelation. As the unreliability of y increases, the bias

, .
~ (underestimation) of R2 grqu. Thus, both goodness of fit parameters




' ' . : )
(se,z.and R2 ) are negatively biased by errors of measurement %

3 . : ,
the criterion. ' . .

The effect of B v on bias in the squared multiple correlation is _ s,

. similar'to its effect on the regression residual as demonstrated in the - .

s ,.

ﬁreceeding section. Negative covariances. among the criterion and | -

”~

. , .
predictor measurement errors will increase the bias in R2 . Positive

<

covariances will tend to decrease thé bias. The actual amount of bias

as well as s .

vu

1]
(= %' - gz) 1s a complex function of § y. and S

9 ‘General statements do not appear possible.
. ; . * '
Measurement errors in the predictors affect the bias in Rz. in a ’ .

complex way. The role of g-uu in L increases bias as long as the

———-——covariances are positive. On the other hand, the separate térms

t

v : e N
involving §-uu in B' tend to decrease bias when the error covariances

are greater than zero: The total effect of §-uu on bias will depend,

'

the re, on the actual values' of §-uu and §-XX' Working through a

s

A

sefies of examples indicates that in most analyses of educational change,

the overall effect of predictor measurement errors will be to increase

the bias in the estimate of the squared multiple correlation. This ‘ \ )

assimes that most error covariances are positive and -small in sizé% The

R degree of -bias decreases/ as § yy dominates S yu+ In conclusion, ‘ .

observed-~score regressio'"énalyses of change on the averége will

odel in most applications. “On >
. . 's J * . v I
the average” does not mean "always" so/investigators should be cautious -

underestimate the goodness of £it of the

in assuming that the squaredjpdifipl correlation estimate has been :

attenuated.




i

Parameters Affecting Bias in S b'b

Reference to Equations 16 and 34 reveals that the following

structural comparisong can be made for §?'b and §_b,b;:

_‘ﬂ?— . EE'E'
: 2 A': Sevz Fe
. o
N N : " )
B: (LU/N)S ygx ! B': (L/N)(Syxx+S uwd?

A and A' indicate that the factors which affect se,2 will

uance ¢ b in the same ways. Thus, the estimates of the standard

inf lated by posttest measurement errors and@gegative

.
’h
-J

hn‘

r ~

b'b
errors will be

criterion-predictor measurement error covariances. The effect of §-uu

is difficult to assess for the general tase. TheAelemeqts of E-b'b' )

tend. tc increase as the variances and covar{;nces ig_g uu increaép. It

is the pattern of elements in §-uu’ however, which determines the

extent of bigi/{; S .,.s generally.
~~ b'b' ™.

The effect of the patterns'qf jnterrelations among thé true and error

components on blas in s-b'b' is most appareqt.in segments B and B'.
For the situation in ﬁhich‘i uu is diagonal and small relative to §-XX’

predictor'errors of measuyrement make the sampling distribution estimatés

too large. When S uu 1s nondiagonal containing both positive and -

O

negative covariances thch approximaté the elements °f~§-xx in value, a
genefgl result concéining the bias»in'g_b,g, caﬁnot be derived. In
conclusion, m;asurement errors ténd to QZQZ estimates of the regression
cbefficients less precise than éhey would bé if perfectly reliable

.variables were used. The degfee of bias is a joint function of svz,

- S , and S _ . Statements that apply across all conditions‘

o= uv’ = uu - XX

and patterna of re;ationshp can not be made, however.




. regression parameters have been given. ,The observed~score regression

parameters‘and the true and error covariance structures. The parameters . \\\\

about the error structure, viz. that s equals O and § is ’ ) ' *¢
, , -— - uv - - uu 4 :

chapter these formulas will permit development of an algorithm that can -

. CONCLUSION

In this chapter general mattix exprecsions for the trug-score

parametere were expressed ds functions ‘of the true—score regreasion »

v

affecting bias ih the obsetved-score regression statistics were evaluated
by comparing theeexgressions for the observed- and .true—score

coefficients. Specifically, the blasing effects of svz, 8 g-uu’ and

t
xx ©°0 se.z, R2ﬁ> and Sy Were explored. Some unequivocal

st atement 8 could be'made, e-g.,ibias\increases in all observed—scor:2

s
escimators as a direct function of svz- By making strong assumptions
- ‘\ .

diagonal, other general statements could be ‘made, e.g., blas increases as :

S increases.v However, it was not poasible to draw unqualified 7

general conclusions about the parametric determinants of bias. Much

insight into the biasing effects of measurement error has been gained by

'examination of the expressions derived in tbis chapter.

q

In the next

be used.in studies of change to assess the potential bias caused by the .

unreliability of measures. - . \




- CHAPTIER VI

AN ALGORITHM FOR ESSESSIHG BIAS IN PLANNED o ) .

ﬁ

STUDIES OF CHANGE

i “ N . . . -
.

- Co e BT

. - ~ INTRODUCTION

- The pucpose. of thi&-ehapcefois to develop a Qethod‘for investigators .
to easily assess'the poqéibléiimpect of measurement. error on statistical
analyses of change. Using the result® of the preceeding chapters,

l . v "

egpecially those of Chapier~v, eevalgnrithm is developed which takes as

input estimates of the papameter vaiuea of the struccural relations among
the latent variables (uhich the 1nvescigato: thinka are cloee to the true
values a Eriori) and’ outputg the expected values of the cortesponding

obae:ved-score,regression pa:gmeters for a prespecified 8amp1e glze. The

logic of the algorithm is explained and illustrated with a simple ex ple '

[y

of the effects of extermal logus of control orientation on change in

.sclence achievement.

h2Y

As part of - this research program, the alsorithm was 1mplemented in
'the form bf a FOBTRnﬂ_compuner program& which can be_easily 1nstalled in
most softwate-libra:ies. ‘The program enables researchers to input a

series of escima:es of the :nne-scote parameter velues and. cbtain

r

expected values of the corresppﬁﬂing observed-score regressiqps. In the

' fin@l:section of the chapter, a ebmprehenaive application of the computer

‘prcgram ig preaented.

Uée of ‘the program will enable investigators to become .aware of the

'wqyﬁ in which meaaurement eérror may bias regresaion.analyses of qhange. : .

Makin§=this ev&l&a:ion;befere data collection is completely analogous to
* o o ) . /




carrying out a power nnalyais. The results of the aaeeesmenﬁ may lea&
the 1nvestigator to medify data collection plans.. For example, the
program may reveal that the reliability of the pretest must be increased
‘1£ xcumé inierances. are to be poeai—bies" The asgessment may 1ndicate
thar. blas can not be nvoided easlly and prompt the investigator to gather
the dat:a in such a’ way as to make the use of attenuatior-correction
methods or multiple indicaEor (LISREL) models possible. Also, as with.

. - power analysis, the prog.ram can be used post hoc hoe to determine the degree
of caution one should hava when interpreting the results of the
restesaion anslyges of obae'rved scores. In many situations, like the one

dea‘:_fribed in theé example intﬁia chapter, it will be concluded that the

possible bias in the observed-score regression estimators was so great

that any inferences must be regarded as complétely suspect.

The algorir.hm requires information About the structural pargne’ters
and the variance structure of the true ggf‘error component’s as @mn.
Specifically, hypothesized or likel valuea of S XX? s uu? & YZ, 5 Lut

] avz, and’ b are necessary. When in thig Chapter, two simplifying
assumpt ons are made, viz., that § uu is diagonal and g — o0,
information about the reliabilities of the observed preéictor §ariab1es
can be used 1nst:‘(ead‘ of error fariances. Tb~ algorithm, however, is
de.veloped in & general‘fotm that will accomodét;g any ‘measu.rement error
variance structure. In the following we let q“ équal the number of

predictor variables in the model plus one.

&




The algorithm first computes the 1m§6ftant true—score regression

statistics, Rz, 8e2’ and §-bb as follows:

Rz = (btS xx b) / SY T | _ L -
se? = [N/(N-)] sy (1-R2) ¢/ , . 2)
Spp - Bez /(0] 8 gl | (3)
PR ' ‘ £
N S¥x=Sxxb ST e W

If one had information about 8 yx 1nstead\bf b, Equation 14 could be

€

solved first and then Equations 1-3. These equations have been derived

in more complicated forms in the preceeding chapters. For ease of

. a@pplication, they are presented 1n their simplest or mosf\easily
calculable form here. The t-tests associatgd with the hypothesif that

the regression coegficién: equals zero in the population are determined

. next:

tl-bllsbl,tbz-bzlsbz,co:, ) (5)
where the probability associated wifh each 't 1s a function 6f N-q .

~ DS
degrees of freedom. N (

. In the next stage of the algorithm, the variance structufé of the

observed X and y scores are derived:

i;‘-

N\

sy? = sy? + 5,2 . . ' (8)

Standard regression formulas are then applied to the obsetved—lcore

covariance matrix to derive eetimatee of the observed regression




ad

parameters. Observed-score parameters, corresponding to the true-score

4 -

paré@eters given gy Equations 1-3 and 5, are found as -follows:

;ﬁk' (B'FS xx B / 52 . (9)

. B;'z«' [N/ (N-0)] sy Cl-R2'>. v - (10)
Sy = eer? G-l St an*
L b'lll Bb'y s thiy = b'2 / Bty s e e e (12)

The estiﬁates and significance test results for, the t;ue-score and
observed-score'diétributions can be compar;d with easé and the potentiai
for blas and‘incofrect inferences assessed.
AN EXAMPLE

lTo gllustréte the value gnd use of the algorithm‘a brief example is
presented. >Considér an‘igyestigatbpn which séeks to test the hypothesis

that external locus of control orientation exerts a negative effect on

true change in science achievement. The variables are posttest sclence
- L

‘achievement (Y), pretest sclence achievement (X.), and external locus
f . g( . ¢ 177 -

N .
of control (Xz). It is assumé&\;hat the correlation between true
pretest achilevement and true ext rnal locus of control is «74, and that

the effect of locus of control on ﬁkge change 18 -.230. The

R e

reliabilities of the sclence pretest and external locus of control scales

e

are assumed to be .769 and .951,.respectively: Complete input -

Information includes:

- ) 7 \\‘
‘ \
S v = & (100 .74 \
2 X .74  1.00 *\ \L
VI-d
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300 .000_
.000 .051 ?

R [ .000 ’ . .
- Vu / L .D00 - ’ : , o
- ~4 !
4 ’ 10028
'1'?' = -0230 ‘ 4
b J ‘ ~\-.l/
ey2 = 1.0, N = 200, and g =3 . -

The true-score regression parameters are found using Equations 1

through 53 ' : ' S
.Rz = ,860
82 = .21 ' :
; ~
»002 ;;001

S ™ -.001  .002 |~

.86 .
..S..YX-’ ’ [ .53 ]

’ tbl = 23.00 » tbz = =5,15 .

With a sample of 200 observations the regression coefficients would be
extremely well estimated. It is clear that a substantial portion .of the |

‘true posttest achievement variance can be explained on the basis of the

true pretest and locus of control (R2 = ,86). The inference that the

Vi-5
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\
\
¢ .
effect of e*ternal locus of control is negative would be strongly ) T . .
|
\

N | ) .
. Bupported [tp, (197) = -5.15, p <.001]. « ! B
AY . . .

“ﬂaving derived the true*score‘regressI “Eaéffictentsﬁénr1ﬂnr*““

hypothesized true-score distribution, Equations 9~12 are used to obtain

the cotrespondin;jkbserved-score coefficients. ‘First, the observed

correlation matrix is cglculated

s l1.00 .60 o (
2xx T .60 1.00 :

. A r
P . - : 9

and then the o%%érved predictor-criterion covariance vector:

‘ ’ . 8 - ' N ‘ 070‘
: ' — Y?‘ . 'l 050 *




tbll = 9,96, tbﬁz'.- 2.‘96 e

The obagrved-SCbre regregsion weight for the pretest is attenuated,

as would be expected from the unreiiability oé the science pretest. Much 8
, to our hypﬁthetical 1nvesfigator's chagfin; the 6bserved-score regression .
' estim;;e of the.;ffect of'e$ternal locus 6f cdﬁtrol is (significantly)
positive! Thus, inferences about.the'effects of externél'lccuslof

con&rol on éhangé in science achievement would be_compietely erroneous if
‘thei}allibility of the measures was not recognized. Use of thel-
algorithm; however,  alertéed our-hypothetical'researcher to the potential
danger, thus enabling him br her Eo‘take cbrreqtive actions prior to data’
collection or to behappropriately ;autious'in interpreting thg results 1f
the‘etudy had alfeady been completed. It is also worth noting‘that the
algoritl';m showed that ;:n t.;:ne‘ average the observed-score model would
evidence less goodnesslof éi; and lower power. ‘ -
FORTRAN COMPUTER PROGRAM -
The algorithg’described above was 1mp1eqented as a FORTRAN program as
one parf oﬁ.thevoverall kesgarch effort. Itlié written in,sﬁandard
FORTRAN aﬁd, although it was run on the WATFIV compiler at New York
University, the program can be 1néﬁalled withouE much effort on é&y
computer system. Furthermore, the structure allows it to be modified
egsily to handle more general problem;, Ceo, more than two predictots.
Thé };ogram is designed to be optimally qseful to investigators who are
planning a study of changé (but have not yet begun data‘cgllection).

As the flow charts in Figures 1 and 2 show, the program follows the

structure of the'algorithm\présented above'§ery closely. A gource




| Figure 1
MAIN PROGRAM

¢ N
@
® 9

Initialize. S

§-uu" SYZ’ N

m’

Y

_Read low, high values
and number of Steps ‘

for 5 g g.s T11s Typ

. by »/ar‘d %‘22,,

¢ /

Determine increments

o
. i""1"2’ 2

1° F220
'bl and b ‘

2

N

V.
Set S

- 4%

vI-g

157




Figure 2
REGRES -SUBROUTINE

Compute R%, sez,
t

S 0 Byx

\ a

' )
Compute b', R2 ,

2 t
gev -s-b'E" ’

o ‘ -
¥X

o
=

Other éubroutines:

L4

MVMAT: Computes matrix-vector product.

MINV: Computes matrix inverse.
QUADF: Computes quadratic form.

[
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118ting of the ‘program appears in the appendix to this chapter. Input to

the program consists of information about the variance structure of the

. e . .
i ,

Mmhe—mmmmmmﬁmm
reliabilities of the observed predic%ors. The program allowa\calculation
‘of seyeral sets of parameter values, thue the input specifiee\e.range of
values and the number of estimates to be calculated within’thattrange.

In the version of the program illustrated ih this chapter, two
predictors, Xi, anddxz, are‘permitted. Let ay refer to the number

-

of possible values of~sx that are specified by the(input, n, to the

X

. 172
humber of levels of rll-(suluz), u3 to the number of levels of L
(8“2“2)’ na.to the number of values of bl’ and ng to the nuuber of

" values of b2, Then one run of the program produces m; XN, X Ny X

n, x ns.combinatious of solutions.
This iterative feature was'included since researchers will often have
little confidence in their specific a priori expectations about

true~score regression parameters. Frequently, however, a range of !
; g P )
possible parameter values can be stated with some confidence. The
.. .

program assesses the potential biases for aIl combinations of suspected

parameter values in a single run. Although the prcgram is formulated in

J

terms of covariances, it will be used most often with standardized

estimates. Hence, all illustrations bélow are given in terms of -

correlations and standard regression weights.

Once the main program has converted the reliabilities into error
variances -and calculated the increments in pavameter ralues which corer
the prespecified range from lowest to highest values, a subroutine which

i

performs the ma jor computations is called for each combination of

-

4




parameter values. On each callﬂ the true~score regressidn parameters

R2, 832, S bb» tbl, thys and s yx are calculated first. Then the

#

covariance matrix of the observed 'scores, §_ix, is determined. Finally,
2! 2

the valyes of the observed—-score regression paraneters, b', R » Bgr s
S b'b's tb'ys Tb'ps and Efyx’ are obtained and printed-’ The program
terminates after' the final call te the subroutine.

AN APPLICATION ~

1

To illustrate the use of the program, it was applied to the following

problem. An investigator was planning a study of change in which it was

anticipated that bz could rauge between —.4 and .4, bl between .1 and

/

.7, t.,, between .7 and .9, r between .6 and .9, and T between
22 . xlxz

-.4 and 4. Within this;set'of conditions, what degree of bias could be

:

anticipated in the observed-score regression coefficients as estimators

of the true-score regression parameters? The program evaluated 2 x 2 x 3

i . ;
x 2 x 3 = 72 combinations of condifions and printed the results in

v

Table 1.

Ingert Table 1 about here

Comparison of the true—score squared«hultiple correlation (column
R2T) with the observed—-score squared thultiple correlation (column R20)
indicates thatplittle bias should be expected. As long as the

>
reliabilities are high R? almost equals R?. When the reliebilities
drop, R?‘ underestimates ;g by .1 to «2. Consistent with this result
is the comparison of se (VET) and se, (VEOQ), which indicates

that se,z is inflated only for eombinations of low reliabilities

o . wm 16y




(ryq

large enough to cause the investigator much concern« Observed-score

= .6, ,, = .7). The bias in neither goodness of fit index seems

22

>

ﬂ1gju1:s_cnnce:ﬁiﬂg_Lhegadequacyﬂnfm:he_moéelmshould;he_reasonably“close
\ to the true-score para@etérs on the ;verage. |

The major statiefics of interest in ﬁhe study of change are QZ and b2"
The columns headed TB2 and OB2 (b2 and’b'z, respectively) show that there
1s some bias. The degree of bias is as great as -2 [=+2 = (=.4) and .2
-.4] in absolute terms and 50% on a relative basis-(F.Z/-.4 and .2/}4)f:
Far allléombinations exceptfthree, the observed-scorie coefficient falls
'-within ﬁhe -4 to .4 fange. In the null case, that is, where b, = 0,
vthe observed-score bilas is quite small across ;11 parameter éombinations.
Examination of the t-ratios for b, and b', (columps T-TB2 and T-OBZ,
reapectiVéiy) reveals th;t tﬁe true-score and observed-score’results are
perfectly consistéﬁt.l That is, there are no combinations of nonnull

conditions for which t, 1s significant but t,, 1s not, and yice

versa. When the true-szore regression weight eiualslo, there are no
instances where T-Oﬁ? leads to rejection of the hypothesis that the
observed—score regreision coefficiéntlequals 0. A

| Although some powerjwill bé lost as a resplt of Lnreliability, our
hypothetical researéher learns from the output of the program tﬁat
measurement err&g wili}not lead to incorrect inferences about the effect

of X, on true char e (i.e., about b2) on the average. Of course, this

2
was the major concern that motivated the preliminary analysis of
potential bias due to unfeliability. In this situation the investigator
may well decide to proéeed with collecting data on xy, Xx,, and y and.

subsequently performing a regression analysis of the observed scores.

7

vI-12
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The advisability of-tdis course of action depends upon how closely the

hypothesized Parameter-values approximate the actuallvalues in. the

population from which the researcher; will draw the sample. In many other
circumstances the opposite course will be decided after examining the
‘output of the program, e.g., in sitdations like the science achievement

example presented earlier.

CONCLUSION

TI;T;hi§’chapter we have described the‘development of a FORTRAN
programl§hichfig bagsed upon an-algoriﬁhm that express;s both the‘ E
true;score and oﬁéerved-score regression parameters as functions of the
variance structures of the true aﬂd error components. Iﬁput to the
program consists of information about the covariances among the true
predictors, the reliabilites of the observed predictors, and the
true"scb;e regression coefficients. The program outputs values of the

true-score regression parameters and those of the corresponding

Comparison of the two sets of

A}

observed-score regression parameters.

parameter_valugs allows one to assess the degree of bias likely to occur
in observed-scpre'}egression.coefficients as est;ﬁaﬁors of their
_true-;core counterparts. Preliminary evaluation 6f'potent1a1 errors of
, inference due to measurement error allows the ipvestigator to redesign
the research 'ﬁﬁn or select new measures. Use of the algorithm and

program is strongly recomménded, since it can improve the quality of

research on the determinants of change and prevent erroneous inferences.

¥ s
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A neuunstnhrxun OF THE  RELATIONSHIP

ETHEEN D

TER : Ul” ’fPUE*qCDRL’ AND DDSERUED-—BCDRE DISTRIDUTI‘ONQ

?Tl v’PIIr AND ™2

JAruntoxt provided i b ERLC )
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0,099

0.110
0,103
0,002
0.102
0,100
0,039

0,079

0,004

0,099

0.110
0,103
0,002

0,102

0.100
0,039

0,079
04004

0 079
0.110
0,103

0,002

0,102

0,100

0,039
0,079
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FOR SELECTED VALUES OF R22: TH1
Ca .
: ) Table 1’

"RT12 R11 ™M OB1 . 'BTBI © SOD1  T-TM1  T-OD1 R22  TD2  OB2
—0.4-0.6 70,100 0,096 0,099 0,070 - 1,010 1,223 0.7 =0,400 -0,261.
'"°?4 0/6. 0,100 0,062 0.110 0,085 0,907 . 0.735 0.7 0,000 =0,011
-0,4°0.6 0,100 0,029 0,103 0.081 0,972 0,353 0,7 0.1400¢ 0,240
=014 0.6. 0,400 0,283 0,082 0,069 4,860 4,073 0.7 0,400 -0,313
| =04 0,6 . 0,400 0,249 0,102 0.000 3,940  3.098 0,7 0,000 -0,042
~0/4.0.6., 0,400 0,215 0,190 0,080 :‘ 4,017 2,485 0,7 0,400 0,220
=044 0.6 0,700 0,369 /0,039 0,051 17,801  9.177 0.7 ~0,400 -0,345
-0,4 0.6 ' 0,700 0,436 0,079  0.070  9.040 6,242 0.7 9,066 -0,074
_=0,4 0,6 0,700 0,402 0,084 0,074 0,340 5,420 0.7 0,400 0,197
'-0.4.06° 0,100 0,073 0,099 0,078 .  1.010 0,937 0.9 ~0,400 -0,370
0.4 0,4 0,100 0,061 04110 0,086 0,507 - 0,715 0,9 0,000 -0.014
-o.4 0.6 | 0,100 0,050 0,103 0,881 0,972 , 0.619 0,7 0,400 . 0,342
-0.4 o.a‘ 6.406 0,257 - 0,082 0,048 4,860 3,777 0.9 -0,400 -0,411
20,4 0.6 0,400 - 0,244 0,102 0,081 3,940 3,022 0.9 0.000 -0,0%6
=044 0,6 0,400 0,234 0,100 0,080  4.017 2,916 0,9 0,400 0,300
0.4 0.6 0,700 . 0,441 0,039 0,048 17,801 9.100.0.9 -0,400 ~0,453
ﬂ-o;qlo;eu’jo.7oo 0,430 0,079 . 0,070 8,840 6,077 0,7 0,000 -0,097
0.4 0.6 0,700 _ 0,418 0,084 0,074  0.340  5.642 0.9 0,400 0,250
£ 004 0,9 0,100 . 0,129 0,099 0i071 1,010 1,417 0.7 =0,400 -0,272
0.4 0i9 0,100 . 0,083 0,110 0,098 0,907 0,851 0,7 0,000 0,005
~0.4 0.9 0,100 . 0,038 0,103 0,094 0,972 0,409 0.7 0,400 0,263
50,4'0.2 0,400 0,379 0,082 0,070 * 4,860 4,050 0.7 -0,400 -0,206
~0.4 0,9~ 0,400 0,334 0,102 0,091 3,940  3.647 0.7 0,000 -0,017
10,4 0.5 - 0,400 0,289 0,100 0,092 4,017 3.142 0.7 0,400 0,249
=044 009 0,700 0,629 0,037 0,050 . 17,801 12,455 0.7 £0,400 ~0.300
[]2\!:}4 0.9 0.700° 0.584 0,079 0.075  0.840 7,777 0.7 0,000 -0.032

164

0.4

sopz2  T-TB2. R2T R20 VET VEO N

0,081  -4,042 ~3,454 0.2 0.4 0.8 0.9 100

0,080 0,000 -0,120 6.0 0.0 1.0 1.0 100 N
0,084  3.689 3,093 0.1 0.1 0.9 0.9 100 -
0,072 =A4,B40 --4.344 0,4 0.3 0.6 0,7 100 '
0,083  0.000. =~0,507 0.2 041 0.9 0.9 100

0,083 4,017 2,738 0.2 0.1 0.8 0.9 100

0,053 -10,172 -6.491 049 0.6 0.1 0.4 100" |
0,072 0,000  -1,02f 0.5 0.3 0.5 0.7 1001 5:1
0,077" 4,766 ° 2,557 0.4 0.2 0.4 0.8 100 -
(01092 =4,042  ~4.040 0,2 0.2 0,8 0.8 100 ;lf
0:101 0,000 -0,138 0.0 0.0 1.0 1,0 ‘100

0,095  3.807 3,603 0.1 0.1 0.9 0.9 100 |
0,080 ° ~4,840 ~5,142 0,4 0.4 0,6 0.6 100 '
0,096 0,600 = -0,582:0,2:0.1 0,9 0.9 100
0,094 4,017 3,179 0,2 0.1 0.8 0.9 100

0,057 710,172 -8,013 0,9 0,7 0,1 0,3 100

0,083 0,000 ~=1,173 0.5 0¢3 0,5 0,7 100

0,087 4,766  2.965 0.4 0,3 0,6 0.8 100 P
0,082 -#,042 =3.310 0,2 0,2 0,8 0.9 100 B
0,089 0,000 -0,052 0,0 0:i0 1,0 1.0 100

0,085  3.089  3.080 0.1 0.1 0.9 0,2 100 .
0,071 =-4,860 -4,041 0.4 0.4 0,6 0,6 100

0,083 0,000 -0,224 0.2 0,1 0,9 0,9 100 *
0.083 4,017 2,985 0,2 0.1 0.8 0.9 100
.0,045 =10,172 ;. =6.,648 0.9 0.7 0.1 0,3 100 ;
0,068 0,000 ~0,477 0.5 0.5-0.6 100 f
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.NOTATION KEY3

RT12 - CORRELATION DBETWEEN TRUC X1 AND TRUE X2¢ R11 - RCLIADILITY OF ODSCRVED X1¢ TB1 ~ TRUE RCGRESSION OF X1 ON Y}
pp1 - ODSERVED RCORESSION OF. X1 OM Y# . STD1 - STANDARD CRROR FOR TRUC R1f S0R1 - STANDARD ERROR FOR ORSERVED D1}

- T-TB1 - T VALUE FOR TRUE D1 ‘T-0D1 ~ T VALUC. FOR ODSERYECD D¢ R22 - RCLIADILITY OF TORSCERVYCD X2% ‘
TB2. - TRULC REGRESSION OF X2 ON Y§ 0P2 - QDSERVED RCCRESSION DF X2 ON Yé - STDR2 - STANDARD ERROR FOR TRUC D2i

: S0B2 - STANDARD ERROR FOR OSERVCD B2 T-TBR - T YALUC FOR TRUE DI} T-0D2 - T VALUC FOR ORSERVED B2 - .
¥ R2T - SQUARCD MULTIPLE CORRELATION FOR TRUL SCORCS: R20 -~ CQUARCD MULTIPLEC CORRCLATION FOR ODBSERVED SCORESS -
' VET -~ HEAN SQUARE ERKOR FOR TRUE REGRCSSION: VCO - HMEAN ZQUARC CRROR FOR ODSERVED RCORESSIOM: N - SAMPLE SIZE i

HOTE! FOR ALL PARAMETERS DASED ON REPCATED DRAWINGS OF SAMPLCSs IE.» STD1,S0D1,T-TDB1,7-0D1,STB2,SOB2,T-TR2,T-0B2,
VET, AND VEO» A CONSTANT N OF 100 WAS ASCSUNMCD, DFE = @7 WAS USCD IN ALL CALCULATIONS.,

A FORTRAN COMFUTER PROGRAM FOR PERFORMING THESC KINDG OF CALUATIONS IS AVAILABLE FROM DR. NOEL DUNIVANT: ASSISTANT -
PROFESSOR, PYYCHOLOGY DEPARTHCNTy NEW YORK UNIVCRSITYs & WACHIMOCTOM PLACE: ?TH FLOOR: NCW YORK: NCW YORK 10003, o

LY

Q ) . ' . . jr 8]
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20

»

589K1309oL1NES=66.NOLIST NOWARN ¢ NOEXT

DIMENSION STX(242)SUUI2,2),TBI2),SVUL2)
"INITIALIZE FIXED PARAMETERS .
D0 5 I=1,2 ‘
STX(I,1)=1.0 . ,

SVU(1)=0.0 ‘

5TY=1l.0"
SVv=0.0

SUU(1,2)=0.0

N=100

READ INPUT TRUE PARAMETERS AND OBSERVED RELIABILITIES
READ(5,101)- SlZLO,SlZH!aSlZN,RllLO,RllHIpRllN.RZZLU RZZHI:

. SUU(2+1)=0.0

1R22NQBIL0:BIHI BIN!BZLB B2H1, 82N

101 FORMAT (15F5.0)

WRITE(6+102)

FORMAT (1H1)
S12INC=(S12HI-S12L0)/{S12N~1)
STX(1y2)=512L0-S121INC
RITINC={R11HI~R11LO}/(R11N-1)
R110=R11L0O-R11INC
R22INC=(R22HI-R22L0) /(R22N~-1)
R220=R22L0-R22INC
BLINC={B1lHI-B1LO)/(B1N-1)
T810=81L0-B1INC
BZINC=(B2HI-B2L0O)/{B2N-F)
T820=B2L0-B2INC

> NS12=S12N

NR11=R11N
NR22=R 22N -

NB1=B1N
NB2=8B2N

DO 20 I=1,NS12.
STX(1,2)=STX(132)#S121INC
STX(291)=STX{142)

DO 20 J=14NR11

IF(J<EQ.1IRL1=R110

R1l=R11 + R11INC
SUU(1.1)=(STX(lall—Rll*SlelallllRll
D0 20 K=1,NR22

1F(K.EQe1)R22=R220

R22=R224R22INC -
SUU(2,2)=(STX(2,2)-R22#STX(2,2))/R22
DO 20 L=1,NBL

IF(L.EQS1)TB(1)=TB10
TB(1)=TB(1)+BLINC .

DO 20 M=1,NB2 -
IF(M<EQ.1)TB(2)=TB20
TB(2)=TBL2)+B2INC - -

CALL REGRES(STX.SUU#TB.STY:SVV.SVU.RLI R224N).

CONTINUE
STOP
END

SUBROUTINE REGRES(STXsSUUsTBySTY, SVVsSVU,RLL,R22,N)
DIMENSION STX(Z.Z).SUU(Z.Z!TB(Z).SVU(Z).STXINV(Z.Z).STB(A.Z)
'aTTIZlosﬂx(ZoZlaSTYX(Z)nSOXINV(Z'2):50?8(21’50812,231

o

aOB(Z)aOT!Z)1QSTB(2)adSDB(2)

ZN=N

COMPUTE TURE~SCORE PARAMETERS e

- COMPUTE R SQUARE TRUE . 1




. CALL oyaustts.srx.asa) ' .-

. 10

R2TY=RSG/STY
COMPUTE MSE TﬁUE

DF=IN-3 .. ‘
STE’STY*(ZN/?F)*(I‘RZ'Y]
COMPUTE TRUE B VECTOR
CALL HINV(STX.STXINVD
o0 5 [=1,2
DO S J=142
STB(IQJ,‘STE*(lllNl*STXINV(Ile
COMPUTE. TRUE T-TESTS

DO 10 I=1,2
QSTB(I)=SQRT(STB(I,I)}
TT{I)=T8(I)/QSTB(I)

" COMPUTE STYX - TRUE ¥YX CUVARIANCE VECTUOR

CALL NMVMAT(STX,TBsSTYX)

- COMPUTE OBSERVED—SCORE PARAMETERS

11

15

COMPUTE $SOX - SIGMA oF OBSERVED SCORES

D011 I=1,2

DO 11 J=1.,2

SDX(I.JISSTXIloJl+SUUll,Jl

COMPUTE SOXINV .

CALL NINVISOX,SOXINV) .
COMPUTE OBSERVED YX COVARIANCE VECTOR '
DO 15/1=1,2 - f
SOYXA1)=STYX(I)+SVUL])

COMPUTE ' OBSERVED-SCORE REGRESSION VECTOR

"‘CALL MVMAT{SOXINV,S0YX,08)

GMPUTE OBSERVED Y VARIANCE

SOY=STY + SVV

» COMPUTE OBSERVED R SQUARE

CALL QUADF(0OB,S0XsRSQ)

R20Y=RSQ/SOY 7
COMPUTE SOE - MSE FOR OBSERVED SCORES !
SOE=SOY*{ ZN/DF ) *( 1~R 20Y)

COMPUTE SIGMA OF OBSERVED B VECTOR

+D0 20 I=1,2

20
25

;100

D020 J=1,2

SGB(1.4)= SUE*II/ZN)‘SOXINV(I.J]
CONPUTE OBSERVED T-TESTS

DO 25 I=1s2
QSDB(I)=SQRT(SOBE1oI))

OT(I)=08(1)/QS0B{1) @

HRITE(b:lOOlSTX(loZDoﬁll.TB(1)908(1).QSTB(1)90508(l)oTT(lD,OT(1).

vRZZoTB(Z):OB(Z)oQSTB(ZDcCSUBkzlpTT(ZIoOT(Z)aRZTY.RZGYo
» STE, SOEsN

FORMAT (1Xs1F4a1le1Xs1F3u101Xs4(1F7. 3'1X).2(1F8.3712311F3.1.

14(1F7.311X).2(1F8.311X).4(1F3.111X31113)

RETURN ~

sTOp o ,

END / :
.SUBROUTINE MVHAT(X.B X8} ¥
MATRIX-VECTGR PRODUCT P
DIHENSION X(2,2)9B(2),XBE2) . . yd

- DO 5 I=1y2

5

XBL1)=0.0
,DU 5 J=1'2
XBU1)=XB(I)¢BLJ)*XLJs1)

" RETURN S

STOP

Z>IKUC END

Cpea

—_—
C A




- ~et?
- $5TOP
z

. $ENTRY

R

" SUBROUTINE MINV(X, XINV)
. INVERT ‘A 2X2 MATRIX

DIMENSION X(2,2)¢XINVL252)
D*X(lol)*X(Z’Z)-XI1’2)*Xl2913

" XINVE1e1)=X12+2)/D

XINV(2+2)=XE101)/D
XINV(1e2)=-XL1,2)/0
XINVI2,1)=XINV(1,2)
RETURN :

- STOP

END
SUBRGUTINE'QUADF(BoSoRSQl

. COMPUTE A QUADRATIC FORM: RSQ =

DIMENSION 8(2’-5(202):7(2)
DO 5 J=1,2 A :
'Y{J3=0.0

DO 5 K=1,2

Y(J)=Y(J) + B(Kl*S(KQJ)

DO 6 J=1,42i

RSQ=Y(J)*B(J)

RETURN

STOP

END

w4 2 .65 485 2 .7

P

gs * S *x B
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